MATH 318 Operations Research

Spring 2023

Some Advice on Project 2

There are 3 stages, corresponding to the successive quarters; thus $n=1,2$ or 3 .
The decision variable x_{n} has two values: advertise (A) or discontinue (D).
Let s_{n} be the level of sales above ($s_{n} \geq 0$) or below ($s_{n} \leq 0$) the breakeven point for quarter $n-1$.
Let a_{n} and b_{n} be the smallest and largest, respectively, possibilities for the additional sales in quarter n.
Let $f_{n}\left(s_{n}, x_{n}\right)$ be the maximum expected profit (in millions) from the beginning of period n onward, given state s_{n} and decision x_{n}.
Recall from calculus that the average value or expected value of a continuous function g on an interval $[a, b]$ is given by $\frac{1}{b a_{a}}{ }_{a}^{b} g(t) d t$.

1) Explain why each of the following is true:
a. $\quad s_{1}=-4$
b. $-3 \leq s_{2} \leq 1$
c. $-3 \leq s_{3} \leq 5$
d. $-4 \leq s_{4} \leq 8$
2) Explain why if the decision x_{n} is to advertise, then we have the recursive relationship $f_{n}\left(s_{n}, x_{n}\right)=30+5 s_{n}+\frac{a_{n}+b_{n}}{2}+\frac{1}{b_{n} a_{n a_{n}}} f_{n+1}^{b_{n}}\left(s_{n}+t\right) d t$
3) The $n=3$ stage. Here $-3 \leq s_{3} \leq 5$. You will want to break up the $[-3,5]$ into two ($[-3,1],[1,5]$) subintervals or perhaps three ($[-3,-1],[-1,1],[1,5]$) subintervals. The functions you will be integrating will all be linear functions of t.
4) The $n=2$ stage. Here $-3 \leq s_{2} \leq 1$. You will eventually want to split this interval into three subintervals: $[-3, \mathrm{~K}],[\mathrm{K},-1],[-1,1]$ where K is the value that makes $f_{2}(K, A)=f_{2}(K, D)$. You should obtain $K=\frac{47+8 \sqrt{10}}{9} \quad 2.411$.
5) The $n=1$ stage. Here $s_{l}=-20$. Show that $f_{l}(-20, D)=-20$ while $f_{l}(-20, A)$ is given by $f_{1}(20, A)=30+5(4+3)+\frac{1}{4}{ }_{1}^{5} f_{2}^{*}(4+t) d t$. You will need to split the interval of integration [1,5] into 3 subintervals: $[1, \mathrm{~K}+4],[\mathrm{K}+4,3]$, $[3,5]$. You should arrive at a maximum expected profit of about 6.7.
