MATH 318 Operations Research Spring 2023

Some Advice on Project 2

There are 3 stages, corresponding to the successive quarters; thus n = 1, 2 or 3.

The decision variable x_n has two values: advertise (A) or discontinue (D).

Let s_n be the level of sales above $(s_n \ge 0)$ or below $(s_n \le 0)$ the breakeven point for quarter *n*-1.

Let a_n and b_n be the smallest and largest, respectively, possibilities for the additional sales in quarter n.

Let $f_n(s_n, x_n)$ be the maximum expected profit (in millions) from the beginning of period *n* onward, given state s_n and decision x_n .

Recall from calculus that the average value or expected value of a continuous function g

on an interval
$$[a,b]$$
 is given by $\frac{1}{b-a} \overset{b}{\underset{a}{0}} g(t) dt$.

1) Explain why each of the following is true:

a.
$$s_1 = -4$$

b. $-3 \le s_2 \le 1$
c. $-3 \le s_3 \le 5$
d. $-4 \le s_4 \le 8$

2) Explain why if the decision x_n is to advertise, then we have the recursive

relationship
$$f_n(s_n, x_n) = -30 + 5\hat{e}s_n + \frac{a_n + b_n \hat{U}}{2 \hat{U}} + \frac{1}{b_n - a_n} \hat{b}_n f_{n+1}^*(s_n + t) dt$$

- 3) The n = 3 stage. Here $-3 \le s_3 \le 5$. You will want to break up the [-3,5] into two ([-3,1], [1,5]) subintervals or perhaps three ([-3,-1], [-1,1], [1,5]) subintervals. The functions you will be integrating will all be linear functions of *t*.
- 4) The n = 2 stage. Here $-3 \le s_2 \le 1$. You will eventually want to split this interval into three subintervals: [-3, K], [K, -1], [-1,1] where K is the value that makes

$$f_2(K,A) = f_2(K,D)$$
. You should obtain $K = \frac{-47 + 8\sqrt{10}}{9} \gg -2.411$.

5) The n = 1 stage. Here $s_1 = -20$. Show that $f_1(-20,D) = -20$ while $f_1(-20,A)$ is given 1^{5}

by $f_1(-20, A) = -30 + 5(-4+3) + \frac{1}{4} \overset{5}{\underset{1}{0}} f_2^*(-4+t) dt$. You will need to

split the interval of integration [1,5] into 3 subintervals: [1,K+4], [K+4,3], [3,5]. You should arrive at a maximum expected profit of about 6.7.