
 

III   THE SIMPLEX METHOD 

 

  A. BASIC SOLUTIONS  
 

  B. THE SIMPLEX METHOD  

 

 C. THE USE OF ARTIFICIAL 

VARIABLES  

 

 D. THE CONDENSED TABLEAU  

 

 E. DUALITY  

 

 F. SOME WRINKLES IN THE SIMPLEX  

      METHOD  

 

  

 

 

Linear 

Programming 

Part III 
© Michael Olinick, 2023 
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III. THE SIMPLEX METHOD  
 
A. Basic Solutions  

 

1. Changing inequalities to equations The feasibility set of a linear 

programming problem is given by a set of inequalities. It is usually easier to 

work with equations than with inequalities, and so the first step in the 

simplex method is to convert the system of inequalities into a system of 

equations.  

 

This conversion is accomplished by introducing new variables into the 

problem. We can illustrate this procedure with the Fromage Cheese Company 

example of Section I. For each feasible mixture (x, y) of the two assortments, 

we define slack variables u, v, and w to represent, respectively, the amount of 

Cheddar, Swiss and Brie cheeses that will remain in stock after the packages 

have been prepared. The problem we want to solve then becomes:  

 

Find nonnegative numbers x, y, u, v, w such that  

 

M = 4.5x + 4y is maximized 

 

subject to the constraints : 

 

30x + 12y + u = 6000,  
10x +   8y + v = 2600, (13) 
4x +   8y + w = 2000.  

 

 

2. Solving systems of equations Before reading this section, you should 

review the Gauss-Jordan method for solving systems of linear algebraic 

equations; this method is described in Appendix III.  

 

Consider then the following problem: Given the three equations:  

 

8x -8y + 2u + 4v + 2w = -14,  
4x + 2y -2u -v + 7w = 29, (14) 

1x + 4y + 3u + 5v + 7w = 2  
 

solve for u, v, w in terms of x and y.  

 

This problem can be solved in a very systematic way. For notational 

convenience, we deal only with the matrix of coefficients:  

 



 

 

 

(15) 

  

 

 

Step 1 Eliminate u from each row (equation) except the first row, where u 

will be made equal to 1.  

 

This requires two operations:  

 

a) Divide every entry of the first row by the coefficient of u; this number is 

called the pivot element and it is boxed in (15). This operation yields the 

matrix:  

 

 

 

 

(16) 

   

b) Eliminate u from the second row by replacing the second row with the sum 

of the second row and twice the first row. Similarly, eliminate u from the 

third row by replacing the third row with the sum of the third row and -3 

times the first row. By the "first row," we mean the first row of (16). This 

yields:  

 

 

 

 

(17) 

   

Step 2 Eliminate v from all rows of (17) except the second. Again, there are  

two operations:   

 

a) Divide the second row by the pivot. that is, the coefficient of v, and'  

 

b) Add -2 times new row 2 to row 1 and add new row 2 to row 3. The  

result of these two operations is:  



 

 

 

 

(18) 

   

Step 3 Eliminate w from all rows except the third. Our operations for this 

step will be performed on the matrix of (18):  

 

a) Divide the third row by the pivot 7, the coefficient of w in the third row; 

 b) Add 5 times row 3 to row 1 and add -3 times row 3 to row 2. The final 

matrix is:  

 

 

 

(19) 

 

This matrix corresponds to a system of equations equivalent to the 

original one, but with a simpler structure:  

 

-9x + 10y + u = 3,  
7x -8y + v = -7, (20) 

-x+2y+w= 4,  
 

from which we may read off  

 

u = 3 + 9x -10y,  
v = -7 -7x + 8y (21) 
w = 4 + x -2y  

 

Now there are infinitely many particular solutions to this system. They 

are produced by assigning arbitrary numerical values to x and y and using 

Eq. (21) to calculate the corresponding values of u, v, and w. For example, 

setting x = 1 and y = -2 gives u = 32, v = -30, w = 9.  

 

One particular solution is singled out. This is the one obtained when x 

and y are both zero. In this case, we have  

x = y = 0, u = 3, v = -7, w = 4. 

This is called a basic solution and u, v, w are called basic variables while x 

and y are the nonbasic variables.  
 



For the original system of equations, we could have designated any two 

variables as nonbasic and asked for the other three in terms of these. The 

solution procedure would have been essentially the same, although the 

matrices at each stage would not have looked the same. In the final matrix of 

the problem, a basic variable will be represented with exactly one entry equal 

to 1 and all other entries in that column equal to 0. Each basic variable has 

the "1" in a different row from all the other basic variables. The values of the 

basic variables in the basic solution appear in the right-hand-most column of 

the matrix.  

 

The Gauss-Jordan procedure described in Appendix III will always 

yield a matrix from which the basic and nonbasic variables can be identified 

readily.  

 

3. Basic solutions and the LP problem We have rewritten the linear 

programming problem about the Fromage Cheese Company in the form: Find 

nonnegative values of x, y, u, v and w so that M = 4.5x + 4y is maximized and 

such that the equations (13) are all satisfied. Any solution of the system (13) 

for which all variables are nonnegative is called a feasible solution. Any 

solution of Eq. (13) for which M is maximized is called an optimal solution. 

The linear programming problem is to find a feasible solution which is also 

optimal. The Fundamental Existence Theorem of Linear Programming states 

that if there exists an optimal, feasible solution, then there exists one which 

is also basic. Stated geometrically, this is just the result that linear functions 

on polygonal convex sets achieve their extreme values at the vertices.  

 

For the cheese example, the solution  

x = 0,  y = 0,  u = 6000,  v = 2600,  w = 2000.  

is both feasible and basic. The basic variables are u, v, and w. Geometrically, 

this solution is located at the vertex where the two edges x =0 and y = 0 

intersect.  

 

This particular solution gives M = 0, which is clearly not optimal. We 

can increase M = 4.5x + 4y by increasing either x or y. One way to go about 

this is to concentrate on increasing one of the variables. Since a unit increase 

in x boosts M more than a unit increase in y, it is reasonable to begin by 

making x as large as possible, while keeping y = 0. When y = 0, Eq. (13) can 

be written  

 

u = 6000-30x,  
v = 2600 -10x, (22) 
w = 2000 -4x.  

 



From these equations, it is apparent that increases in x have the effect 

of decreasing u, v, and w. To retain a feasible solution, we must insure that 

these variables remain nonnegative. From the equation for u in (22), we see 

that x can be increased to 200 before u becomes negative. Similarly, v does 

not become negative until x exceeds 260 and w does not become negative 

until x exceeds 500.  

 

Thus we can increase x up to 200 without driving the other variables 

below zero, but we cannot increase x beyond 200. If we let x = 200, we obtain 

(using Eq. 22) a new basic feasible solution:  

x = 200, y = 0, u = 0, v = 600, w = 1600 

for which the revenue has increased: M = (4.5)(200) = 900.  

Geometrically, we have moved from the vertex (0,0) to the vertex 

(200,0) which is the intersection of the two edges y = 0, u = 0.  

 

The step we have just described is the heart of the simplex method of 

solving linear programming problems. In the next section, we will describe 

the simplex method in more detail by carrying out all the steps necessary to 

solve the Fromage Cheese Company example. We can describe the general 

outline a little more carefully here, however.  

 

First, we need to start with a basic feasible solution. We begin by 

adding a slack variable to each constraint. This gives us a total of n + m 

variables in the problem. The solution in which each of the original n 

variables is set equal to 0 will be a basic, feasible solution. The basic 

variables will be the m slack variables. Geometrically, we have located 

ourselves at the vertex where the edges xl = 0, x2 = 0,..., xn =0 intersect. 

Generally, this will be a highly nonoptimal solution.  

 

Second, we seek a new solution in which one of the xi becomes basic 

and one of the slack variables, say uj, becomes nonbasic. The simplex method 

advises us on how to choose xi and uj so that the new solution remains 

feasible and increases M. The new solution is obtained from the old one by 

using the Gauss-Jordan technique. Geometrically, we move from the initial 

vertex to the vertex where the edges xl = 0, ..., xj-1 = 0, uj = 0, xj+1 = 0, ..., xn = 0 

intersect. This step is repeated a sufficient number of times until M is made 

as large as it can be.  

 

B. The Simplex Method  
 

The first step in the simplex algorithm to solve the problem of maximizing M 

= c•x subject to Ax ≤  b and x ≥ 0 is to replace the system of inequalities by 

equations. This can be done by the addition of slack variables.  

 



The Fromage Cheese Company problem can be formulated as: Find 

nonnegative values of X, y, u, v, w such that:  

 

30x + 12y + u = 6000,  
10x +   8y + v = 2600, (23) 
4x +   8y + w = 2000.  

-4.5x – 4y + M = 0  
  

and so that M is as large as possible.  

 

We write the matrix of coefficients of Eqs. (23) in a special form, called 

the extended simplex tableau (Tableau 5.1). 

  

Tableau 5.1  

 

 x y u v w M 
 

  

 [30] 12 1 0 0 0 6000  u 

 10 8 0 1 0 0 2600  v 

 4 8 0 0 1 0 2000  w 

 -4.5 -4 0 0 0 1 0  M 

           
 

The first three rows of the tableau indicate that we have a basic 

feasible solution with basic variables u, v, and w. (The basic variables at each 

stage appear again to the right of the last column). The value of these basic 

variables when the nonbasic ones (x and y at this stage) are zero are 

indicated in the final column. The entry in the lower right-hand corner of the 

tableau gives the current value of M.  

 

The bottom row of the tableau represents the equation -4:5x -4y + M = 

0. This equation remains valid for all x and y, by the definition of M. The fact 

that x and y appear with negative coefficients in this row means that if either 

x or y is increased, the value of M must also be increased for the equation to 

hold. 

 

We want to increase M, but at the same time retain a basic feasible 

solution.  To do this, we need to select one nonbasic variable and make it 

basic while we pick a basic variable and change it to a nonbasic one. This 

process is described more succinctly by saying we pick one variable to enter 

the basis and one to leave the basis.  

 



Any variable which appears with a negative coefficient in the bottom 

row of the tableau can be selected to enter the basis. In practice, the variable 

whose  coefficient has the largest absolute value is chosen, because this gives 

the largest immediate increase in M. There is no guarantee, however, that 

this practice will lead to the optimal solution in the smallest number of steps. 

 

Suppose we decide to pick the variable in the jth column to enter the 

basis. This is often indicated by drawing a short arrow under the coefficient 

of this variable in the bottom row; we have done this in Tableau 5.1.  

 

When a variable enters the basis, its value is going to increase. This is 

going to affect the other variables in each of the other equations represented 

in the tableau. The other nonbasic variables are going to remain equal to 0. 

Thus the variables which are now basic are going to change to preserve the 

equations. But each basic variable occurs with nonzero coefficient in exactly 

one row of the tableau, so it is affected by only one equation. 

  

We really don't care how a currently basic variable will change as long 

as it remains nonnegative. We lose feasibility, however, if it should become 

negative. Now a basic variable starts out as positive, so we have only to worry 

about its decreasing. It will decrease only if the coefficient of the jth variable 

(the one that is entering the basis) in the row containing the basic variable is 

positive. If that coefficient is zero or negative, the basic variable will not 

decrease. To illustrate this point, suppose we have the equation  

 

2x + 0y -5z + u = 375 

 

and u is a basic variable. If the variable z or the variable y is picked to enter 

the basis, there is no problem: increasing z or y by any positive amount can 

only cause an increase of u. But if x is chosen to enter the basis, then x can 

only be increased to 375/2 before u becomes negative.  

 

This observation sets the stage for explaining how to select a variable 

to leave the basis if the jth variable is going to enter the basis. We compute 

the ratio of the entries in the last column of the tableau to the positive entries 

of the jth column. The row which gives the smallest ratio contains the 

variable which will leave the basis. 

  

Let's illustrate this for Tableau 5.1. The negative coefficient with 

greatest absolute value in the bottom row is -4.5. Thus we will let x enter the 

basis. The other entries in the x-column are all positive so compute all the 

ratios of the entries in the last column to the corresponding elements in the 

first column.  

 



Tableau 5.2 

 x y u v w M 
 

  

 [30] 12 1 0 0 0 6000  u 

 10 8 0 1 0 0 2600  v 

 4 8 0 0 1 0 2000  w 

 -4.5 -4 0 0 0 1 0  M 

           
 

 

The smallest ratio is 200. It occurs in the first row and the basic 

variable of that row is u. Thus, u will leave the basis when x enters. The pivot 

entry is the coefficient of the variable which is entering the basis which 

appears in the row of the lowest ratio.  

 

The critical next step in the simplex algorithm is to use the Gauss-

Jordan procedure to make the pivot element 1 and to make all the other 

entries in that column zero, including the entry in the bottom row of the 

tableau. This is necessary if the variable of that column is to satisfy the 

definition of being basic. The Gauss-Jordan procedure is used because it 

guarantees that the system of equations represented by the new tableau will 

be equivalent to the original system of equations.  

When we apply the Gauss-Jordan procedure to Tableau 5.2, we obtain 

Tableau 5.3.  

 

Tableau 5.3 
 

 x y u v w M 
 

  

 1 2/5 1/30 0 0 0 200  x 

 0 4 - 1/3 1 0 0 600  v 

 0 32/5 - 2/15 0 1 0 1200  w 

 0 -11/5 3/20 0 0 1 900  M 

           
 

As before, we can read off a basic feasible solution from the tableau. 

The basic variables are x, v, w. Their values appear in the final column. The 

non- basic variables are y and u and their value is 0. The current value of M 

is 900.  

 

The bottom row of Tableau 5.3 contains a negative number. This tells 

us that we have not yet reached an optimal solution. There is only one 



negative entry and that appears in the y-column. This means that in the next 

step, the variable y is going to enter the basis. To find the variable that will 

leave the basis, compute the ratios of the last column to the positive entries 

in the y- column; see Tableau 5.4.  

 

Tableau 5.4 

 

 x y u v w M 
 

  

 1 2/5 1/30 0 0 0 200  x 

 0 [4] - 1/3 1 0 0 600  v 

 0 32/5 - 2/15 0 1 0 1200  w 

 0 -11/5 3/20 0 0 1 900  M 

           
 

The smallest ratio (150) occurs in the second row. The basic variable of 

that row is v. Hence v will enter  the basis when y enters. The pivot entry is 

4. The Gauss-Jordan procedure is used as before. We obtain a new tableau:  

 

Tableau 5.5 
 

 x y u v w M 
 

  

 1 0 1/15 -1/10 0 0 140  x 

 0 1 - 1/12  1/4 0 0 150  y 

 0 0 [2/5] -8/3 1 0 240  w 

 0 0 -1/30 11/20 0 1 1230  M 

             
 

In this feasible solution, x = 140, y = 150, w = 240, u = v = 0 and M = 

1230. This is still not the best we can do because there remains a negative 

entry in the bottom row. The variable u should be brought back into the 

basis. To find the variable which should leave, we need to compare the two 

ratios 140/(1/15) = 2100 and 240/(2/5) = 600. We do not compute a ratio for 

the second row because the coefficient of u in this row is negative. Since 600 < 

2100, the basic variable of the third row-which is w-will leave the basis. The 

result of applying the Gauss-Jordan procedure with pivot entry 2/5 is:  

 
Tableau 5.6 

 

 x y u v w M   



 

 1 0 0 1/6 -1/6 0 100  x 

 0 1 0  -1/12 5/24 0 200  y 

 0 0 1 -4 5/2 0 600  u 

 0 0 0 5/12 1/12 1 1250  M 

 

The new basic feasible solution is  

 

x = 100, y = 200, u = 600, v = w = 0, and M = 1250. 

 

Since none of the entries of the bottom row of Tableau 5.6 is negative, it is not 

possible to increase M any more. We have arrived at a basic, feasible, optimal 

solution of the problem. We see again that the best mixture is 100 packages 

of the Fancy assortment and 200 packages of the Deluxe. We also read off 

from this solution that v = z = 0 means that all of the Swiss and Brie cheeses 

will be used up, but since u = 600, there will be 600 ounces of Cheddar 

remaining.  

 

If you re-examine Fig. 5.4, you will see that the effect of the simplex 

method applied to the cheese example is to start at the vertex (0,0) of the 

feasibility set and then to move in a counterclockwise manner around the 

boundary until the vertex (100,200) is reached.  

  Note how the iterative step of the simplex method replaces one 

equality constraint by an inequality constraint and one inequality by an 

equality. This corresponds geometrically to a move from one vertex of the 

feasibility set to an adjacent vertex.  

 

Dantzig's simplex method provides a systematic way of moving from 

one basic feasible solution to another basic feasible solution which increases 

the value of M. The simplex method is an iterative algorithm; that is, it calls 

for the repetition of the same sequence of basic steps. We have seen that the 

iteration stops when all entries in the bottom row of the extended tableau are 

positive. When this happens, we have found an optimal, feasible solution. The 

iteration may stop for another reason, however. Suppose some entry in the 

bottom row of the tableau is negative, so that at the next step the associated 

variable is to become basic. Now suppose that every entry in that column is 

negative or zero. This means that there is no limit on how much we may 

increase that variable. No matter how large we make it, the other variables 

will remain nonnegative and we will retain feasibility. On the other hand, the 

larger we can make that variable, the larger we can make M. Thus, there is 

no limit to the size of M. In this case, the linear programming problem has no 

optimal solution. The simplex method not only delivers the solution when the 

problem has one, it also tells you when no solution exists.  

 



C. The Use of Artificial Variables  

 

We have seen that it may be useful to introduce slack variables into 

linear programming problems. They help convert inequalities into equations 

and often provide an initial basic solution. In this section I will show that it is 

sometimes useful to introduce yet another set of new variables.  

 

Let's start by considering the breakfast problem of Section I.D. We 

may write this problem as:  

Find nonnegative numbers x and y such that  

x + 3y ≥ 3, 

38x + 24y ≥ 50, 

and for which M = -4x -6.5y is maximized.  

 

 To convert the inequalities to equations, we add slack variables u and 

v so the problem becomes  

Find nonnegative numbers x, y, u, and v so that  

 

                         x +   3y - u           = 3,  
                     38x + 24y       -v      = 50, (24) 
                       4x + 6.5y +        M = 0,  
  

and M is as large as possible.  

 

The variables u and v measure the amount of iron and protein, 

respectively, that is in excess of the daily requirement. Rather than "slack" 

variables, they might more appropriately be called surplus variables in this 

problem.  

 

Because the coefficients of u and v are -1 instead of + 1 in Eq. (24), the 

system of equations does not give a basic solution. This is not a happy state of 

affairs, because the simplex method must start off with a basic feasible 

solution. If we multiply the first two equations of Eq. (24) by -1 we do obtain 

an equivalent system which is basic:  

 

                        - x -   3y + u           = -3,  
                     -38x - 24y       +v      = -50, (25) 
                       -4x + 6.5y +        M = 0,  
 

The basic solution here is x = y = 0, u = -3, v = -50. Unfortunately,  

this solution is not feasible, because u and v are negative. Again, we cannot 

make use of the simplex method.  

 



One way out of these difficulties lies in the introduction of artificial 

variables for each constraint equation having no basic variable. These are 

"artificial" variables because they do not represent any real quantity in the 

process being modeled, in contrast to the slack variables which do correspond 

to real features.  

 

The new artificial problem has the form: Find nonnegative numbers 

x,y,u,v,a,b such that  

 

 

 

for M’ as large as possible.  

 

In this statement,  p is an unspecified but very large positive number 

and M' = M -pa -ph. It is important to note two things at this point:  

 

1. If a basic feasible solution exists for the original problem, then it will 

constitute a basic feasible solution for the artificial problem (with a = b = 0 

being nonbasic variables);  

 

2. The simplex method can be applied to the artificial problem.  

 

 The result of applying the simplex method will be an optimal, basic 

feasible solution of the artificial problem. I claim that in this basic feasible 

solution, the variables a and b will both be 0. For, if either one were positive, 

then the quantity M' = M -pa -pb could be increased even more by decreasing 

a or b. This would contradict the fact that we are at an optimal solution of the 

artificial problem. This verifies the claim. Since a = b = 0, the optimal value 

for M' is the optimal value for M and we have an optimal, basic feasible 

solution for the original problem.  

 

The extended tableau for the artificial problem Eq. (26) has the form  

Tableau 5.7 

 

 x y u v a b M’ 
 

  

 1 3 -1 0 1 0 0 3 a 

 38 24 0 -1 0 1 0 50 b 

 4 6.5 0 0 0 0 1 0 M’ 

     p p    
 



In this tableau, the variables a and b are not quite basic because of the 

presence of the p's in the bottom row. We can make them basic by replacing 

the last row by the last row minus p times the sum of row 1 and row 2. This 

yields a tableau (Tableau 5.8) in which a and b are basic.  
Tableau 5.8 

 

 x y u v a b M’ 
 

  

 1 3 -1 0 1 0 0 3 a 

 [38] 24 0 -1 0 1 0 50 b 

 4 6.5 0 0 0 0 1 0 M’ 

 -39p -27p p p 0 0 0 -53p  

            
 

We now apply the simplex algorithm as described in Section III.B. 

Since p is a large positive number, the negative entry with the largest 

absolute value in the bottom row is 4 -39p. Thus in the first step of the 

simplex method, the variable x will enter the basis. The standard 

computation of ratios gives 3/1 = 3 in the first row and 50/38 = 1 6/19 in the 

second row. Thus b will leave the basis. The pivot element is 38 and the 

Gauss-Jordan procedure produces a new tableau (Tableau 5.9).  

 
Tableau 5.9 

 

 x y u v a b M’ 
 

  

 1 
 

-1 
 

1 
-  

0 
 

a 

 1 
 

0 
-  

0 
 

0 
 

x 

 0 
 

0 
 

0 
-  

1 
-  

M’ 

 0 
- p 

p 
p 

0 
p 

0 
- p 

 

               

 

Since there are negative numbers in the bottom row of this tableau, 

the simplex method continues through another iteration. This time the 

variable y will enter the basis and a will leave. The pivot element is N. The 

Gauss-Jordan procedure yields Tableau 5.10.  

 



 

 x y u v a b M’ 
 

  

 1 0 
-    -  

0 
 

y 

 1 0 
0 -  -   

0 
 

x 

 0 0 
  -  -  

1 
-  

M’ 

 0 0 0 0 p p 0   
 

Now none of the entries in the bottom row of the tableau are negative 

(remember that p is a very large positive number). Hence we have arrived at 

an optimal, feasible solution for the breakfast problem. We can read off the 

solution from Tableau 5.10:  

 

x = 13/15,  y = 32/45,  M= -m= 364/45 

 

Thus Sherry should mix 13/15 ounces of Brand X cereal with 32/45 ounces of 

Yukkies. This mixture will provide (13/15) + 3(32/45) = 3 mg of iron and 

3.8(13/15) + 2.4(32/45) = 5 g of protein so that both minimal nutritional 

requirements are exactly met. The cost of this mixture is 364/45 or about 8.1 

cents.  

 

D. The Condensed Tableau  

 

In this section we will present a slightly streamlined representation of 

the simplex method. Instead of working with the extended tableau, we 

perform the necessary calculations on a smaller tableau. This condensed 

tableau is especially useful for small scale LP problems that are going to be 

solved by paper-and- pencil calculations. It was introduced by E. M. L. Beale 

and Steven Vajda in the 1950's and extensively used by Albert W. Tucker. It 

is sometimes referred to as the Tucker Tableau.  

 

We begin by examining more closely the effect on the extended tableau 

of a single iteration of the simplex method. Suppose we are about to perform 

the step which puts the variable y into the basis and removes the variable w. 

We represent the tableau before iteration schematically:  

 



 

 

In performing the iteration, the first step is to divide each element of the 

pivot row by the pivot element, which in this case is denoted by p. The effect 

of this step on the tableau is to change its form to: 

 

 

  

Next, the new pivot row is used to make all other entries in the y-

column (or pivot column) equal to 0. If the entry in some row in the pivot 

column is r, then that row is replaced by that row minus r times the pivot 

row. Performing this step produces the after-iteration tableau:  

 



 

 

The idea behind the condensed tableau presentation is to eliminate 

from the extended tableau as many columns as there are basic variables. If a 

variable u is basic at some step, then the column corresponding to it is 

omitted. Thus the w column would not appear in the before-iteration tableau 

of our example.  

 

What happens after the iteration? Since w is no longer basic, it will be 

represented by a column. Since y has become basic, no y column will appear. 

A simple way to take care of this is to move the w column into the slot 

previously occupied by the y column.  

 

 We will illustrate the condensed tableau in a particular example. 

Consider the Fromage Cheese Company example once again. Before the first 

iteration in which x enters and u leaves the basis, the tableaux are:  
 

Tableau 5.11 Before Iteration 
 

x y u v w M 
 

 

30 12 1 0 0 0 6000 
10 8 0 1 0 0 2600 
4 8 0 0 1 0 2000 
-

4.5 
-4 0 0 0 1 0 

 

 

x 
 

y   

30 12 6000  u 
10 8 2600  v 
4 8 2000  w 
-4.5 -4 0  M 

 

 

(a) Extended Tableau 

 

(b) Condensed tableau 

 

After the first iteration, they look like:  

 

Tableau 5.12  After Iteration 

 

x y u v w M 
 

 
 

u Y 
 

  



1 2/5 1/30 0 0 0 200 
0 4 - 1/3 1 0 0 600 
0 32/5 - 

2/15 
0 1 0 1200 

0 -11/5 3/20 0 0 1 900 
 

1/30 2/5 200 x 
- 1/3 4 600 v 
- 

2/15 
32/5 1200 w 

3/20 -11/5 900 M 
 

 

(a) Extended Tableau 
 

(b) Condensed tableau 
 

The condensed tableau has the advantage of keeping track of the 

essential information, while discarding the inessential. In this example, the 

extended tableau requires the linear programmer, or her computer, to 

perform computations and keep track of 28 numbers at each step. For the 

condensed tableau, this is reduced to 12 numbers.  

 

Noting that the entry s -(rq)/p can be written as s + q( -r/p), we can 

write the transformation rules for changing a pre-iteration condensed tableau 

to its post-iteration format:  

  1. Pivot Entries  

a) In the pivot row, the pivot element is replaced by its reciprocal; each 

remaining entry is the old entry divided by the pivot element.  

b) In the pivot column, each old entry (except the pivot) is divided by 

the negative of the pivot to obtain the new entry.  

  2. Entries not changed in step 1.  

a) Add to each entry s: the product of the old entry in the same column 

to the right or left of the pivot and the new entry in the same row above or 

below the pivot. These changes are exhibited in the follow- ing scheme:  

  

 

 

 

 Before iteration  After iteration 

    

 

To make sure these rules are well understood, let us carry out the 

operations on the condensed Tableau 5.11(b):  

1. Pivot Entry. The pivot entry is 30, the pivot row is the first row and the 

pivot column is the first column.  

a) (p → 1/p):  30  →  1/30 

   (q  →  q/p):  12  →  12/30 = 2/5 

6000  → 6000/30 = 200  



 

b) (r  →  -r/p):  10  →  -10/30 = -1/3 

4  →  -4/30 = -2/15 

-4.5   → 4.5/30 = 3/20 

At this point, the new condensed tableau has the form  

  1/30 2/3 200 

  - 1/3 ___ ___ 

  - 2/15 ___ ___ 

  3/20 ___ ___ 

2. The remaining entries: s  →  s + q( -r/p)  

 

 s 
s+ [q(-r/p] 

 

 8 (row 2, column 2)  8 + [12 (-1/3)]  = 4  

 2600  2600 + [6000 (-1/3)]  = 600  

 8 (row 3, column 2)  8 + [12 (-2/15)]  = 32/5 

 2000  2000 + [6000 (-2/15)]   = 1200 

 -4 -4 + [12 (3/20)] = -11/5 

 0  0 + [6000 (3/20)]  = 900  

 

Check that these computations produce Tableau 5.12(b).  

 

Once mastered, these transformations greatly reduce the time and 

space necessary to use the simplex method to solve LP problems. In addition 

to its computational advantages, the condensed tableau also sheds light on 

another important topic in linear programming, duality. This is the subject of 

the next section.  

 
E. Duality  

In our continuing saga of Henry Brewster and his cheese company, I 

must tell you now that Henry ages all the cheeses himself from milk 

produced by cows on his uncle's farm. Instead of packaging his cheeses into 

gift assortments, Henry has the option of selling his stock to a wholesale 

distributor.  

 



Suppose the distributor is willing to pay u, v, and w dollars per ounce 

for Cheddar, Swiss, and Brie cheeses, respectively. Then the distributor 

would have to offer a total of  

m = 6000u + 2600v + 2000w 

dollars to buy Brewster's entire stock. The distributor would like to keep the 

number m as small as possible.  

 

Now Henry is not going to sell his stock if the prices offered by the 

distributor are too low. He quickly calculates that the distributor would pay 

him  

30u + 10v + 4w 

dollars for exactly the combination of cheeses that go into one package of the 

Fancy Assortment. Since Henry can receive $4.50 for such a package if he 

sells it himself, he will not give up the ingredients for less than $4.50. Thus 

the distributor, in his quest to minimize m, is faced with the constraint  

30u + 10v + 4w ≥ 4.5. 

  

Similarly, the distributor must offer at least $4 for the packet of ingredients 

that go into one box of the Deluxe Assortment; that is,  

12u + 8v + 8w ≥ 4. 

 

The Distributor's Problem can then be stated as: Find nonnegative 

numbers u, v, and w such that  

m = 6000u + 2600v + 2000w is minimized 

subject to the constraints:  

30u + 10v + 4w ≥ 4.5, 

12u + 8v + 8w ≥ 4. 

 

Henry's problem and the distributor's problem are closely related. One 

is a maximization problem and the other is a minimization one. The 

coefficients of the function to be optimized in one problem are the constant 

terms in the constraints of the other problem. In fact, every coefficient 

appearing in Henry's problem also appears in the distributor's problem and 

vice-versa (see Section I.C.). These two problems are examples of what are 

called dual problems. Note that Henry's problem has two variables and three 

constraints, while the distributor's problem features three variables and two 

constraints.  

 

We will now give the general definition of a primal LP problem and its 
dual.  

DEFINITION Given a linear programming problem in the form: Find 

an n  1 vector x ≥ 0 such that  

M = c•x is maximized    (P) 

subject to the constraints:  



Ax ≤ b, 

where A is an m  n matrix, b is an m  1 vector and c is a 1  n vector, 

the problem:  

Find a 1  m vector y ≥ 0 such that  

m = y•b is minimized     (D) 

subject to the constraints  

yA ≥  c 

is called the dual of (P) and (P) is called the primal problem.  

 

 

In expanded form, the primal problem has the familiar form: Maximize 

 

 

subject to: 

 

 

… 
 

  

while the dual problem has the form:  

Minimize m = b1y1 + b2y2 + ...+ bmym    
subject to:  

a11y1 + a21y2 +... + am1ym ≥  c1 

a12y1 + a22y2 + ...+ am2ym ≥ c2 

a1ny1 + a2ny2 + ...+ amnym≥ cn. 

 

The expanded form of the primal and dual problems makes clear some 

of the relations between them:  

a) The coefficients of the function to be maximized in the primal problem are 

the constants in the constraints of the dual problem;  

b) The coefficients of the function to be minimized in the dual problem are the 

constants in the constraints of the primal problem;  

c) A variable of the dual problem is assigned to each constraint of the primal 

problem;  

d) A variable of the primal problem is assigned to each constraint of the dual 

problem.  

 

 The dual problem is not in the standard form of a Linear Programming 

problem as given in Section I. It is, however, equivalent to the problem:  

Maximize -m = -b1y1 + -b2y2 + ...+ -bmym    
subject to:  

-a11y1 + -a21y2 +... + -am1ym ≤  -c1 

-a12y1 + -a22y2 + ...+ -am2ym ≤ -c2 



-a1ny1 + -a2ny2 + ...+ -amnym≤ -cn. 

 

 A more compact form of the dual problem can be given by introducing 

the idea of the transpose of a matrix. If A is any m  n matrix, then the 

transpose of A, written AT, is the n  m matrix whose ijth entry is the jith 

entry of A; that is, (AT)ij = Aji.  

As an example, if , then   while the transpose 

of  is . 

 

There are several important properties of the transpose which are 

easily proved. They are collected in the following theorem.  

THEOREM 6 Let A be any m  n matrix. Then:  

a)   (-A)T = -(A T)  

b)   (A T) T = A  

c)   (AB) T = B T A T.  

d)   If A and B are of the same size, then A ≤ B if and only if A T  ≤ B T. The 

proof of this theorem is left as an exercise.  

 

Using the transpose, we may write the dual of Eq. (P) in the form: Find 

y ≥ 0 such that  

M = ( -b) T (y) T is maximized    (D')  

subject to  

-A T (y) T ≤ (-c) T. 

This formulation is helpful in establishing the important result of the next 

theorem.  

 

THEOREM 7 The dual of the dual is the primal.  

Proof The primal problem is given by Eq. (P). Let the dual problem be de- 

scribed by Eq. (D'). Then by our first definition, the dual of Eq. (D') is:  

Find a 1  n vector z ≥ 0 such that  

m = z ( - c)T is minimized 

subject to:  

z( -AT)  ≥  (-b)T. 

This is equivalent to the problem:  

Find z ≥ 0 such that  

M = -m = Z(c)T is maximized    (27) 

 subject to  



zAT ≤ (b)T. 

Now let x = (z)T so that (x)T = ((z)T)T = z. This gives z (c)T = (x)T (c)T =  

(c•x)T = (c•x) since c•x is a real number. We also have z AT = (x)T(AT) = (A 

x)T so that the constraints z AT ≤ (b)T can be written as (A x)T ≤ (b)T. By Parts 

(b) and (d) of Theorem 6, this inequality is the same as A x ≤ b. Substituting 

in (27), we find that the dual of the dual is: Find x ≥ 0 such that  

 

M = c•x is maximized 

subject to:  

A x ≤ b, 

which is the primal problem. This completes the proof.  

 

Eventually, we wish to establish the Fundamental Duality Theorem 

which asserts, in part, that if the primal and dual problems both have 

feasible solutions, then they both have optimal solutions with M = m. As a 

step in that direction, we first prove the following Theorem.  

 

THEOREM 8 Let x be a feasible solution to the primal problem and y a 

feasible solution to the dual. Then c•x ≤ y•b.  

 

Proof Since x is feasible for the primal problem, we must have Ax ≤ b. We 

know that y ≥ 0, so that y(Ax) ≤ y•b. On the other hand, y is feasible for the 

dual problem so that yA ≥ c, and multiplication of each side by the 

nonnegative vector x gives (yA)x ≥ c•x. We combine the inequalities with the 

associative rule for matrix multiplication to obtain:  

c•x ≤ (yA)x = y(Ax) ≤ y•b which is the desired result.  

  

Corollary 1 If the primal and dual problems both have feasible solutions, then 

both have optimal feasible solutions.  

Proof Let y be any feasible solution to the dual problem. The primal problem 

fails to have an optimal solution exactly when the function M = c•x is 

unbounded. But for any feasible solution x of the primal problem, Theorem 8 

asserts that M is no larger than the fixed number y•b. Thus M is bounded 

and the primal problem must have an optimal, feasible solution. The proof 

that the dual problem also has an optimal, feasible solution is similar. 

 

Corollary 2 Suppose x is a feasible solution to the primal problem and • is a 

feasible solution of the dual problem. If c•x = y•b, then x and y are optimal 

solutions of the primal and dual problems, respectively.  

 

Proof Suppose, to the contrary, that x* is a feasible solution to the primal 

problem with c•x* > c•x. Since c•x = y•b, we have c•x* > y•b, contradicting 

Theorem 8.  

 



Suppose, then, that we have feasible solutions to the primal and dual 

problems. According to Theorem 8 and its corollaries, both problems have 

optimal, feasible solutions. Suppose M* is the largest feasible value for M in 

the primal problem and m* is the smallest feasible value for m in the dual 

problem. From Theorem 8, we have M* ≤ m*. In fact, it turns out that M* = 

m*. This statement is part of the Fundamental Duality Theorem. We will 

show how the simplex method can be used to prove this statement.  

 

We may begin by examining the condensed initial tableaux for the 

primal and dual problems. These will have the form of Tableaux 5.13 and 

5.14.  

 

Tableau 5.13 Initial condensed tableau for primal  

 

 x1 x2 … xn 

 
 

 a11 a12 … a1n b1 

 a21 a22 … a2n b2 

 …     

 am1 am2  amn bm 

 …     

 -c1 -c2 … -cn 

 
0 

 

  

 

Tableau 5.14 Initial condensed tableau for dual  

 y1 y2 … ym 

 
 

 -a11 -a21 … -am1 -c1 

 -a12 -a22 … -am2 -c2 

 …     

 -a1n -a2n  -amm -cn 

 …     

 b1 b2 … bm 

 
0 

 

The simplex method proceeds by selecting a sequence of pivot elements 

and using them to perform Gauss-Jordan eliminations. We wish to show that 

if corresponding pivot entries are chosen in the tableaux for the primal and 

dual problems at every stage, then the pattern of relations among the 

coefficients evidenced in Tableaux 5.13 and 5.14 is retained after the Gauss-



Jordan process has been completed. To see why this is true, suppose at some 

stage, the primal and dual tableaux look like Tableaux 5.15 and 5.16.  

 

Tableau 5.15 Primal problem  Tableau 5.16 Dual problem 

   before iteration      before iteration 
 . 

. 

. 

 . 

. 

. 

 . 

. 

. 

  . 

. 

. 

 . 

. 

. 

 . 

. 

. 

… [p] … q … x  ... [-p] … -r … y 
 . 

. 

. 

 . 

. 

. 

 . 

. 

. 

  . 

. 

. 

 . 

. 

. 

  

… r … s … x’  … -q ... -s … y’ 
 . 

. 

. 

 . 

. 

. 

 . 

. 

. 

  . 

. 

. 

 . 

. 

. 

  

… y … y’ … M  … x … x’ … +m 
 

We now perform the basic iteration step of the simplex method using p for the 

Pivot element in the primal problem and -p in the dual problem. Using the 

rules of Section III.D, we obtain the post-iteration condensed tableaux: 

Tableaux 5.17 and 5.18.  

 

 

Tableau 5.17 Primal problem  Tableau 5.18 Dual problem 

   after iteration      after iteration 
 . 

. 

. 

 . 

. 

. 

 . 

. 

. 

  . 

. 

. 

 . 

. 

. 

 . 

. 

. 

… 1/p … q/p … x/p  ... -1/p … -r/p … -y/p 
 . 

. 

. 

 . 

. 

. 

 . 

. 

. 

  . 

. 

. 

 . 

. 

. 

  

… -r/p … s-(qr/p) … x’-(xr/p)  … -q/p ... -s+(rq/p) … y’-(qy/p) 
 . 

. 

. 

 . 

. 

. 

 . 

. 

. 

  . 

. 

. 

 . 

. 

. 

  

… -y/p … y’-(qy/p) … M-(xy/p)  … x/p … x+(-xr/p) … +m+(xy/p) 
 

A comparison of the tableaux shows that the duality pattern which 

existed before iteration continues to hold after iteration. Note also that the 

sum of the numbers in the lower right-hand corner of the primal and dual 

tableaux has been retained; it is equal to M + m both before and after the 

iteration. In particular, if both M and m start at 0, so that M = -m, this 

inequality will be maintained at each and every step.  

What happens when we reach the optimal, feasible solution? In the 

primal tableau, the entries in the last row will be nonnegative. The entries in 

the last column will also be nonnegative because they represent values of the 

basic variables. But the entries in the last column (x/p,..., x' -(xr/p),...) of the 

primal tableau are exactly the entries in the last row of the dual tableau. (See 

Tableaux 5.17 and 5.18.) Since all these entries are nonnegative, we have 

reached an optimal solution of the dual problem also. The optimal values of 



both problems are given by the numbers in the lower right-hand corner of the 

tableaux. But we have just shown that their absolute values are equal! Thus, 

the maximum value of M in the primal problem. is exactly the same as the 

minimum value of m in the dual problem. This is the result we promised.  

 

We actually can deliver more than we promised. The solution of the 

dual problem would appear in the last column of the final tableau for the 

dual problem. But the entries in this column ( -y/p,. .., y' -(qy/p),. ..) also 

appear in the last row of the final tableau for the primal problem. (See 

Tableaux 5.17 and 5.18.) Thus, the solution of the dual problem can be read 

off from the solution tableau of the primal problem. By duality, we can turn 

things around; that is, the solution of the primal problem can be read off the 

final tableau for the dual. In summary, the solution to both the primal and 

dual problems is contained in the final tableau of either problem.  

 

Let us illustrate some of these results with the Fromage Cheese 

Company example. The variables x and y represented the number of 

packages of the two assortments to be prepared. The variables u, v, and w 

were slack variables in the original primal problem corresponding to excess 

amounts of Cheddar, Swiss, and Brie cheeses. In the dual problem, they 

represented the prices to be offered by the distributor for an ounce of each of 

these cheeses. The final tableau for the primal problem is shown in Tableau 

5.6.  

 

Tableau 5.6 

 

 x y u v w M 
 

  

 1 0 0 1/6 -1/6 0 100  x 

 0 1 0  -1/12 5/24 0 200  y 

 0 0 1 -4 5/2 0 600  u 

 0 0 0 5/12 1/12 1 1250  M 

 

We read off the solution of the distributor's problem from the bottom 

row:  

 

u = 0, v = 5/12, w = 1/12,  M = 1250. 

 

The distributor's best offer to Brewster is that he will buy all the 

cheese at $0 per ounce of Cheddar, $5/12 per ounce of Swiss, and $1/12 per 

ounce of Brie. This will cost the distributor $1250, exactly the same amount 

that Henry would earn if he sold all the cheese in gift packages. The role of x 

and y in the distributor's problem is to measure slack, the amount that the 

distributor's offer exceeds the constraints, 30u + 10v + 4w ≥ 4.5 and 12u + 8v 



+ 8w ≥ 4. Since x = y = 0 in the solution of the dual problem, there is no slack. 

The distributor's offer exactly meets the constraints.  

 

 We may summarize what we have proved in this section by stating the 

central theorem about duality.  

 

THEOREM 9 (FUNDAMENTAL THEOREM OF DUALITY) Let Eq. (P) be 

a primal linear programming problem and Eq. (D) its dual.  

 

a) If both problems have feasible solutions, then both have optimal, feasible 

solutions and the maximum value of M is the same as the minimum value of 
m.  

 

b) If one of the problems has feasible solutions, but the objective function (M 

or m) is unbounded, then the other problem has no feasible solutions.  

 

c) If one of the problems has a feasible solution, but the other problem does 

not, then the problem with feasible solutions has no optimal feasible solution.  

 

d) It is possible that neither problem has a feasible solution.  

 

Proof a) We have already indicated how the simplex method may be used to 

prove this result;  

 

b) The proof is by contradiction and use of Corollary 1 of Theorem 8;  

 

c) The proof is left as an exercise for the reader;  

 

d) Consider the primal problem of maximizing xl + x2 subject to the con- 

straints xl - x2 ≤ -1 and - xl + x2 ≤ 0. It is easy to show that the feasibility set of 

this problem and of its dual are both empty.  

 

There are many other interesting aspects of duality theory. You may 

find extended discussions of these in any of the more advanced texts on linear 

programming listed in the References at the end of this chapter. I do want to 

indicate here, however, several applications of duality.  

 

In the first place, the natural formulation of a particular question may 

be a linear programming problem in dual form; for example, the problem of 

the distributor buying cheese from Henry Brewster. To solve this problem 

directly, using the simplex method, requires the addition of both slack 

variables and artificial variables before an initial basic feasible solution can 

be found. If we switch to the primal problem, less work is required as a basic 

feasible solution is produced as soon as slack variables are introduced.  



 

As another example, suppose that an optimal feasible solution of a 

primal LP problem has been found. It is then discovered that an additional 

constraint should have been used but was omitted from the original 

formulation of the problem. When this constraint is added, the feasibility set 

may be significantly affected. The optimal feasible solution of the original 

problem may not even be feasible for the new problem. If we restrict 

ourselves to using only primal problems, then we would have to start all over 

again. The addition of a constraint in the primal problem, however, 

corresponds to the addition of a new variable in the dual problem. The basic 

feasible optimal solution of the original problem gives a basic feasible 

solution to the dual problem even with the new variable added (simply let the 

new variable be nonbasic) and the simplex method can continue from this 

step; instead of going back to M = 0, we are beginning from a relatively large 

value of M.  

 

As a final example, duality theory has a very close connection to the 

theory of two-person games. The Fundamental Duality Theorem and the 

simplex method of linear programming provide a constructive proof of the 

best known result in two-person zero-sum game theory, the Von Neumann 

Minimax Theorem.  

 

F. Some Wrinkles in the Simplex Method  
 

In the basic iteration step of the simplex method of solving linear 

programming problems, the first task is to select the pivot element. The pivot 

column is determined by choosing a column whose entry in the bottom row of 

the tableau is negative. Any such column will do, although in practice we 

usually select the column by finding the negative entry in the bottom row 

with greatest absolute value.  

 

Once the pivot column is chosen, the pivot row is selected by examining 

the ratios of the entries in the last column of the tableau to the corresponding 

positive entries in the pivot column. The pivot row is the row for which these 

ratios is smallest.  

 

We have already discussed what happens if all the entries in the pivot 

column are nonpositive (Section III.B). In such a case, the function M is 

unbounded and the LP problem has no optimal, feasible solution.  

 

Suppose that some of the entries in the pivot column are positive, but 

that there is a "tie" between two or more of the ratios for the minimum value. 

In this case, we can choose any of the associated rows as the pivot row. After 

applying the Gauss-Jordan procedure, two (or more) of the variables that 



were in the basis will have become zero. However, only one of them has left 

the basis (the one determined by the pivot row); the others remain in the 

basis. In such a case, it is possible that the iteration does not increase the 

value of M; it may remain  

unchanged.  

 

There is another situation in which the iteration does not improve the 

value of M. Suppose that a particular entry in the pivot column is positive, 

but the entry in the last column of the tableau in the associated row is 0. This 

will happen only if one of the basic variables has value 0 at this stage. Then 

the minimum ratio will be 0 so that this variable will be picked to leave the 

basis. The variable that enters the basis will remain equal to 0 and the value 

of M will not change when the Gauss-Jordan procedure is implemented. 

Geometrically, we will not have moved to a new vertex by this iteration, but 

have only changed our minds about which variables to call "basic."  

 

The term degeneracy is used to indicate a situation when we have a 

basic feasible solution in which at least one of the basic variables has value 0. 

Degeneracy occurs fairly frequently in the solution of linear programming 

problems, but it commonly causes no difficulty. The simplex algorithm may 

be continued and after several more steps, the value of M will begin to 

increase again.  

 

It is theoretically possible, however, that the value of M will never 

increase, but that we will cycle repeatedly through a set of nonoptimal basic 

feasible solutions. The simplex method, as we have described it, cannot 

prevent this from happening. Imagine for a moment a feasibility set in which 

vertices V3, V7, and V2 are all adjacent to each other, but the optimal value 

of M occurs at vertex V1. It is possible that the simplex algorithm will take us 

from V3 to V7 to V2 and then back to V3 again. If this occurs, we will repeat 

these steps over and over and never reach the optimal vertex V1. 

 

Artificially constructed examples of cycling under the simplex method 

have been discovered, so the theoretical possibility is really an actual one. 

Oddly enough, cycling has never occurred in any of the thousands of linear 

programming problems arising from real-world situations that have been 

solved by the simplex method. It is comforting to know, however, that the 

simplex method can be modified to avoid the possibility of cycling.  
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