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Industrial production, the flow of 

resources in the economy, the 

exertion of military effort in a 

war theater-all are complexes of  

numerous interrelated activities. 

Differences may exist in the goals 

to be achieved, the  particular 

processes involved, and the 

magnitude of effort. 

Nevertheless, it is possible to 

abstract the underlying essential 

similarities in the management 

of these seemingly disparate 

systems.  

 

George B. Dantzig  

 
 



II. CONVEX SETS   
 

A. Definitions, Examples, Basic Properties  

 

In Part II, we will discuss in more detail the nature of the feasibility 

set of a linear programming problem. We will concentrate on feasibility sets 

arising from problems involving two variables. In such cases, the feasibility 

set lies in the plane and we can make use of geometric intuition. Our aim is 

to outline a proof that optimal feasible solutions of LP problems can be found 

at the vertices of the feasibility sets.  

 

DEFINITION If x =  and y =  are points in 

Euclidean n-dimensional space, then the line segment between x and 

y is the set of vectors of the form  

w = tx + (1- t) y  where 0 ≤ t ≤1  (10) 
 

You may think of the parameter  t in Eq. (10) as a time variable and 

consider that the line segment is traced out by moving from y at t = 0 to x at t 

= 1. The set of all vectors satisfying Eq. (10) where t can be any real number 

is the set of points of the entire line through x and y.  

 

DEFINITION A subset K of Euclidean n-dimensional space is said to 

be convex if, whenever x and y belong to K, then so does every point 

of the line segment between x and y.  

 

The following are all examples of convex figures in the plane (see Fig. 5.5)  

a)  The entire plane,  

b)  A straight line in the plane,  

c)  The region between two parallel lines,  

d)  The interior of a square, triangle, or circle, 

e)  The first quadrant of the plane.  

 

 

   
(a) The plane  (b) A line  (c) Region between  



      parallel lines 

 

  
(d) Circles, squares, or triangles  (e) The first quadrant  

 
 

Fig. 5.5 Convex sets. 

  

The idea of a convex set can be further clarified by examining some 

sets in the plane which are not convex (see Fig. 5.6):  

 

a) The region between two concentric circles,  

b) The interior of a star,  

c) The plane with the origin deleted,  

d) Two disjoint disks,  

e) The letter u.  

 

 

 

 

The pictures of Fig. 5.6 indicate that it is often easy to prove that a 

particular set is not convex. We just have to locate two points in the figure so 

that the straight line segment between them does not lie entirely in the 

figure.  



 

  
(a) Region between  

      concentric circles  

 

(b) Interior of a star  

 

(c) Plane with origin (0,0) 

deleted 

 

  
(d) Two disjoint disks  

 
(e) The letter U 

 

Fig. 5.6 Nonconvex sets. In each case, the segment between x and y does not 

lie entirely inside the set. 

 
To establish the convexity of a figure usually requires more work. We shall 
see how this is done for a particular set in Theorem 2. First, we give an 
important definition.  

 

DEFINITION If a is a given 1  n vector and b a given constant, then 

the set of all vectors x in Euclidean n-dimensional space satisfying a 

• x ≤ b is called a closed half-space. The set of vectors for which a • x = 

b is called the boundary of the closed half-space.  

 

In the special case n = 2, the inequality a1x1 + a2x2 ≤ b is satisfied by 

exactly those points which lie on one side of the boundary line a1x1 + a2x2 = b.  

 

THEOREM 2 Every closed half-space is a convex set.  

 



Proof Suppose y and z lie in the closed half-space consisting of vectors which 

satisfy a •x ≤ b. Let w be any point on the line segment between y and z. 

Then we have  

a •y ≤ b, a • z ≤ b, and w = ty + (1 -t)z for some t in [0, 1].  

 

We must show that a •w ≤ b.  

 

Now  

 

a •w = a • ( ty + (1 -t)z )  

= t(a •y) + (1 -t)(a •z)  

≤ tb + (1 - t)b since t and  1 - t are nonnegative  

=  b 

 

The next theorem gives a very general and very important property of convex 

sets.  

 

THEOREM 3 The intersection of any collection of convex sets is convex  

 

Proof: Let P and Q be any two points in the intersection. Then P and Q belong 

to each convex set of the collection. But each convex set contains the segment 

between P and Q. Thus the segment belongs to every set in the collection so 

that it belongs to the intersection. 0  

 

Theorems 2 and 3 provide the first essential fact about feasibility sets. 

Each feasibility set of a linear programming problem consists of all vectors 

that simultaneously satisfy a finite number of linear constraints. Each 

constraint defines a closed half-space. Thus the feasibility set is the 

intersection of a finite number of closed half-spaces, each of which is convex 

by Theorem 2. Theorem 3 then gives us  

 

THEOREM 4 The feasibility set of a linear programming problem is a  

convex set.  

 

 

DEFINITION A polygonal convex set is the intersection of a finite 

number of closed half-spaces.  

 

B. Polygonal Convex Sets in the Plane  

 

Now let us focus attention on polygonal convex sets in the plane. An 

edge of a polygonal convex set K is defined to be the intersection of K with the 

boundary line of a closed half-plane determining K. Since an edge is the 

intersection of two convex sets, it must also be convex. In fact, it is a convex 



subset of a line. There are only a few possibilities for the geometric character 

of an edge.  

 

THEOREM 5 A subset K of a line is convex if and only if K is one of the  

following:  

 

a)    K is the entire line; 

b)    K is the empty set;  

c)    K is an open or closed ray;  

d)    K is a segment of the line, with or without either endpoint; or  

e)    K is a single point.  

 

Proof: It is easy to verify that each of these sets of type (a)-(e) is convex. We 

shall show how to prove the converse. Suppose K is a convex subset of the 

line. If K is nonempty, then there is at least one point p of the line that 

belongs to K. If K is not the entire line, then there is at least one point q of 

the line which does not belong to K.  

 

Now we can parameterize the line so that it consists of all points of the 

form  

 

wt = tp + (1 -t)q where t can be any real number. 

 

The positive side of the line consisting of all points wt for which t is 

positive and the negative side is similarly defined. We are given that p is on 

the positive side of q. Since K is convex, and q does not belong to K, there can 

be no points of K on the negative side of q. All points of K lie on the positive 

side of q.  

 

Thus the set of parameter values t corresponding to points of K is 

bounded below by O. Since this is a set of real numbers, it has a greatest 

lower bound tr with tr ≥ 0. Let r be the corresponding point of the line; that is 

r = tr (It is possible that r = q.) By the definition of greatest lower bound and 

the fact that K is convex, we have that no point to the left of r belongs to K 

and all points between, r and p belong to K. 

  

Now if all the points to the right of r (that is, all points wt with t > tr) 

belong to K, then K is either a closed or open ray, depending on whether or 

not r belongs to K. Suppose then that some point s to the right of r does not 

belong to K. Let the corresponding parameter value be ts.  
 

Consider again the set of parameter values t corresponding to points of 

K. This set is bounded above by ts and so it must have a least upper bound tu. 

Let u be the corresponding point of the line,  . Then K consists of all 



points between r and u, including or excluding the points r and u. Thus if K is 

a convex subset of a line and is not of type (a), (b), (c), or (e), then it must be 

of type (d), See Fig. 5.7. 0  

 

____________________________________________ 

q       r              p                u                  s  

Fig. 5.7 Location of points along K as given in proof of Theorem 5.  

 

 

Not all of the cases mentioned above can occur for the feasibility set of 

an LP problem. Recall that an edge of a polygonal convex set in the plane is 

the intersection of a boundary line of a closed half-space with the set. Because 

of this, it can be shown, by reasoning similar to that in the proof of Theorem 

5, that an edge containing more than one point must be either a closed 

segment or a closed ray; that is, an edge always contains its endpoints.  

 

By a vertex of a polygonal convex set K in the plane we will mean a 

point of K which is contained in at least two distinct boundary lines. A vertex 

will be an endpoint of the edge of the polygonal convex set. We want to prove 

the fundamental theorem that a linear function defined on K assumes its 

largest and smallest values at vertex points.  

 

First, consider a linear function f(x, y) =  x + y defined along some 

line L with equation y = mx + b. Then we have  

 

f(x, y) = x +  (mx + b) = (+ M)x + b. 

 

If the quantity + M is zero, then the function is constant along L. If + M 

is positive, then f is a strictly increasing function of x, while if + M  is 

negative, f is a strictly decreasing function of x (see Fig. 5.8). 

  

In any case, if we examine the function along some closed segment of 

the line L, then the minimum value of f will occur at one endpoint and the 

maximum values at the other. If we examine f along a closed ray, then there 

are two possibilities:  

 

1. The minimum value occurs at the endpoint of the ray and there is no 

maximum value for f, or  

 

2. The maximum value of f occurs at the endpoint and there is no minimum  

 



 
 

+ M > 0 + M < 0 
Fig. 5.8 The graph of y = (+ M)x + b. 

 

 

We are now ready to outline the proof of the basic theorem on the 

location of extreme values of a linear function at the vertices of a polygonal 

convex set.  

 

  
 

Fig. 5.9 Intersection of a line and a bounded polygonal convex set in the 

plane.  

 

Suppose K is a polygonal convex set in the plane and that p is an 

interior point of K; that is, p is not on any edge. See Fig. 5.9. Let L be any line 

containing p and suppose L intersects the boundary of K in two points. Then 

the value of f at p must lie between the values of f at these two points. We 

may label the two points a and b in such a way that  

 

f(a) ≤ f(p) ≤ f(b). (11) 
 

Now the point b lies on an edge of K with vertices c and d. On this edge, the 

function f takes on its extreme values at the vertices. Label the vertices so 

that  

f(c) ≤ f(b) ≤ f(d). (12) 



 

Combining inequalities (11) and (12) gives us f(p) ≤ f(d). In other words, 

associated with each interior point of the convex set K, there is a vertex at 

which the value of f is at least as large.  

 

Similarly, we can find a vertex e of the edge containing a with f(e) ≤ f(a) 

≤ f(p), so that given an interior point p of K, there is a vertex at which f is at 

least as small.  

 

Since a polygonal convex set has a finite number of vertices, there are 

vertices at which the function f assumes its greatest and smallest values. 

This completes an outline of the proof of the desired result. This is only an 

outline, because we have not considered all possibilities. We assumed, for 

example, that the line L through p intersected the boundary of the convex set 

in exactly 2 points. It may happen that the line does not intersect the 

boundary at all or that it intersects the boundary in only one point. Figure 

5.10 illustrates these possibilities.  

 

 
 

 
Fig. 5.10 Two possible ways a line might intersect an unbounded polygonal 

convex set in the plane. 

 

In the case where the line and the boundary do not intersect, there is 

no problem. Either the function f is constant on the line or it takes on all real 

values. If the latter occurs, there is no optimal solution to the LP problem.  

 

Suppose the line intersects the boundary at one point. If f has no 

maximum on the line, the LP problem again has no optimal solution. On the 

other hand, if f has a maximum, it must occur at the point on the boundary. 

That boundary point lies on an edge of K. If the edge is a closed segment, 

then f assumes a value at one of the two vertices of that edge which is greater 

than the value f(p). If the edge is a closed ray, then again there is either no 

maximum for f or the value of f at the endpoint of the ray exceeds the value 

f(p). 



 

In every case, then, if  f takes on a maximum value on the polygonal 

set K, it takes that value at one of the vertices.  

 

To make use of simple geometric figures in the plane, we have 

restricted our considerations to LP problems involving only two variables.  

 

Even in this case, we have presented only an outline of the proof that 

the optimal feasible solution occurs at a vertex point. Furthermore, our proof 

involved checking a fair number of special cases.  

 

If the reasoning discussed here is generalized to LP problems involving 

more than two variables, it is reasonable to suspect that the number of 

special cases that can arise will be outrageously large. Surely, I hope you are 

thinking, there is a way to generalize the ideas of this proof which handles all 

the cases at the same time. There is indeed such a proof for the general LP 

problem with n variables, but it requires some mathematical tools we do not 

have space to develop in this book. The reader with a stronger background in 

linear algebra  

or functions of several variables may wish to consult the proofs in the 

following References: George B. Dantzig, Linear Programming and 

Extensions and George Hadley, Linear Programming.  

 
 


