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Industrial production, the flow of 

resources in the economy, the 

exertion of military effort in a 

war theater-all are complexes of  

numerous interrelated activities. 

Differences may exist in the goals 

to be achieved, the  particular 

processes involved, and the 

magnitude of effort. 

Nevertheless, it is possible to 

abstract the underlying essential 

similarities in the management 

of these seemingly disparate 

systems.  

 

George B. Dantzig  

 

 



 

WHAT IS LINEAR PROGRAMMING?  

 

A. Introduction  

Many problems that arise in the real world have to do with finding the 

optimal values of some variables. A businessperson is usually concerned with 

maximizing profits, although in some situations he or she may want to 

minimize costs. The dietician for a large high school has the responsibility for 

providing a nutritionally adequate hot-lunch program that puts the smallest 

burden on the school budget. Transportation engineers may wish to design a 

mass transit system that will carry the largest number of workers from their 

jobs to their homes during the rush hours. Forest rangers are interested in 

picking locations to station fire-fighting equipment to minimize the time 

needed to reach any blaze that may erupt in the forest. Countless other 

examples of this nature may be given.  

A large class of these problems can be successfully modeled as 

problems of optimizing a linear function of several variables subject to a 

finite number of linear constraints. The subject of linear programming (often 

abbreviated as LP) deals with the formulation and solution of such problems.  

The formal theory of linear programming was not developed until 

shortly after World War II, although various special linear programming 

problems had been solved earlier. At first glance, the standard methods of 

calculus to locate maxima and minima of functions might seem to be all that 

is needed to solve such problems. Unfortunately, calculus is rarely of much 

help as the extreme values of a linear function almost always occur on the 

boundary of its domain. New techniques were required. Fortunately, in 1947 

an American mathematician, George B. Dantzig, discovered an efficient 

algorithm for solving linear programming problems. Dantzig's algorithm and 

the availability of high-speed computers have made possible the application 

of linear programming models to many important real-world decision-making 

situations. In the next section, we will present a fairly simple LP problem 

and a detailed discussion of its solution. Although the example is not a very 

sophisticated one, it does evidence many of the important concepts that arise 

in linear programming.  

 

B. A Detailed Example: Maximizing Revenue with Limited Resources 
  

Each year the Fromage Cheese Company has a sale to celebrate the 

anniversary of the opening of its first store. This year, company president 

Henry Brewster decided to offer two gift packages of cheese at a special price.  

The Fancy Assortment will contain 30 ounces of Cheddar cheese, 10 

ounces of Swiss cheese, and 4 ounces of Brie. The Deluxe Assortment will be a 

package with 12 ounces of Cheddar, 8 ounces of Swiss, and 8 ounces of Brie. 

In the past, these two assortments have been very popular and Brewster is 



certain that he can sellout his entire stock if he prices the Fancy Assortment 

at $4.50 a box and charges $4 for the Deluxe combination.  

 

 

Brewster has in his storage rooms 6000 ounces of Cheddar, 2600 

ounces of Swiss, and 2000 ounces of Brie. He must decide how many packages 

of each assortment to prepare. Being a prudent businessman, he would like 

to find the numbers that will maximize his revenue.  

 

We may begin to develop a mathematical formulation of Brewster's 

problem by letting x denote the number of packages of the Fancy Assortment 

and y the number of packages of the Deluxe Assortment that will be 

prepared. Brewster's job is to determine the values of x and y for which the 

quantity M = 4.5x + 4y is maximized.  

 

The total amount of Cheddar cheese that would be used in x packages 

of the Fancy Assortment and y packages of the Deluxe would be 30x + 12y. Of 

course, he cannot sell more Cheddar cheese than he has in stock. This implies 

that there is a constraint on the number of packages he may prepare; namely, 

x and y must be restricted so the inequality  

 

30x + 12y ≤ 6000 (1) 
holds.  

 

There are similar constraints on the Swiss and Brie cheeses. These are, 

respectively,  

10x + 8y ≤ 2600 (2) 
 

and  

4x + 8y ≤ 2000 (3) 
 

Brewster's choice for the number of packages of the two assortments he 

can sell is governed by these three inequalities together with the trivial 

observation that x and y must be nonnegative numbers. Mathematically, he 

is restricted to the choice of a point in the constraint (or feasibility) set  

 

C = { (x,y): x ≥ 0, y ≥ 0, x and y satisfy (1), (2) and (3) }. 

 

The constraint set C can be described nicely in a geometric way. 

Consider the inequality (1). The points in the plane whose coordinates satisfy 

this inequality are the points which lie on or below the line L1 whose equation 

is  

  

30x + 12y = 6000. (4) 



 

Since x and y cannot be negative, Brewster is only concerned with points in 

the first quadrant of the (x,y)-plane which lie on or below L1 This set is the 

shaded triangle shown in Fig. 5.1.  

 

Now we may consider the effect of the second inequality. This forces 

Brewster to choose only those points which lie on or below the line L2 whose 

equation is 

 

10x + 8y = 2600. (5) 
 

The combined effect of inequalities (1) and (2) is to restrict Brewster's choice 

to the region of the first quadrant consisting of those points which lie on or 

below both the lines Ll and L2. This region is shown in Fig. 5.2.  

 

 

 
Fig. 5.1 The feasibility set determined by inequality (1). 

 

 

 



Fig. 5.2 The feasibility set determined by inequalities (1) and (2).  

 

The third inequality (3) imposes one final restriction. The points not 

only must lie in the first quadrant below the lines Ll and L2, they must also 

lie on or below the line L3 with equation  

 

4x + 8y = 1000. (6) 
 

This set of points is shown in Fig. 5.3.  

 

 

 

 
 

We have a geometric representation of the constraint set of Brewster's 

problem. It is a polygonal region in the plane with five vertices: (0,250), (0,0), 

(200,0), (140,150), (100,200). The coordinates of the last two vertices listed 

here are found by determining the points of intersection of L1 with L2, and L2 

with L3. This involves solving pairs of linear equations, a straightforward 

algebraic procedure.  

 

The coordinates of any point in this polygonal region give a feasible 

mixture of the two assortments. There are, of course, still an infinite number 

of points in the constraint set so there are infinitely many different 

combinations of Deluxe and Fancy Assortments that can be packaged with 

the cheese that is available.  

 

Let's see how we can narrow Brewster's choices even more. Suppose he 

is considering for the moment a mixture Po = (xo, yo) which corresponds to a 

point in the interior of the constraint set. (See Fig. 5.4.)  

 



If Po lies in the interior of C, then we can find a point, like P0 = (x1, y1), which 

also lies in C but both of whose coordinates are greater than the 

corresponding coordinates of Po. In other words, it is possible to squeeze out a 

few more packages of each cheese assortment with the available inventories. 

But the more packages Brewster can prepare, the more revenue he takes in. 

Thus, no point in the interior of the constraint set is an optimal choice for 

Brewster. The optimal choice will be one of the points on the boundary of C. 

We have helped Brewster narrow his choices to a smaller set, but there are 

still infinitely many different combinations from which to pick. We need some 

further restrictions.  

 

 

 

 
 

The number Brewster is trying to maximize is his total revenue, M = 

4.50x + 4y. Let's examine how this quantity behaves along one of the edges of 

the boundary of the constraint set, say the straight line segment from (0,250) 

to (100,200). This is a piece of the line L3, so the coordinates of any point on 

this edge must satisfy equation (6). The edge can be described analytically as  

 

{ (x,y): 4x + 8y = 2000, 0 ≤ x ≤ 100} 

 

For points on this edge, we have 8y = 2000 -4x so that 4y = 1000 -2x. Thus the 

revenue obtained from a point (x, y) on this edge can be written as  

 

M = 4.50x + 4y = 4.50x + 1000 -2x = 2.50x + 1000. 

 

Clearly the larger we can make x, the larger we will make the revenue. 

But we have seen that x can be no larger than 100 if we are to remain on this 

edge. If Brewster is going to choose a point on this edge, then he should 

choose the vertex (100,200).  



 

We can argue similarly for the other edges of the boundary. For any 

edge, the revenue is maximized at one of the endpoints of the edge; that is, at 

one of the vertices of the constraint set.  

 

Hence, Brewster needs only to consider the five vertices of C to find his 

optimal mixture. His problem is reduced to deciding among a finite set of 

alternatives. One way he can do this is to list all the vertices and compute the 

revenue associated with each one. This is done in Table 5.1.  

 

The table shows that the optimal choice for Brewster is to prepare 100 

packages of the Fancy Assortment and 200 packages of the Deluxe 

Assortment. This will produce revenue of $1250. This particular mixture uses 

up all of the Swiss and Brie cheese he has, but only 5400 of the 6000 

available ounces of Cheddar.  

 

 

Table 5.1 

 

Vertex (x,y) Revenue = 4.5x + 4y 
(0,0) $0 

(0,250) $1000 
(100,200) $1250 
(140,150) $1230 

(200,0) $900 
 

The constraint set, and hence its vertices, are determined without 

consideration of the particular prices that will be charged for the two cheese 

assortments. If Brewster decides to charge amounts other than $4.50 and $4 

for the two assortments, his optimal mixture will still be given by one of the 

five vertices we have found. To find the best mixture, he need only retest the 

vertices with the new revenue function. If his stock should change, or if he 

should decide to alter the relative proportions of the three cheeses in the 

assortments, then the constraint set would change. In such a case, he would 

have to find the vertices of the new constraint set and test the revenue 

function at each of these points.  

 

What can we learn from this example that will be useful for the 

general linear programming problem? In the next section, we will formulate 

the general problem and see that its solution is qualitatively much like that 

of the Fromage Cheese Company example.  

 
C. The Linear Programming Problem  

 



The mathematical problem of the previous section – stripped of its 

cheesy crust – is simply this:  

 

Maximize the quantity M = 4.5x + 4y 

 

 subject to the constraints:  

30x + 12y ≤ 6000, 

10x + 8 ≤ 2600, 

4x  + 8y ≤ 2000, 

x ≥ 0, y ≥ 0 

 

  

The important feature of the expressions occurring in this problem is 

that all of the variable terms are of degree one; that is, x and y occur alone 

and only to the first power. There are no terms of type xy, x2, xy3, xl/2, 

Expressions of the form ax + by (a, b constants) are called linear 

combinations of x and y. More generally, if a1x1 + a2x2 + ....+ anxnare variables 

and a1,a2,...,an  are constants, then the expression  

a1x1 + a2x2 + ....+ anxn  

is called a linear combination of the xi’s. Linear programming is concerned 

with problems involving such linear combinations.  

 

The general linear programming problem has the following precise 

mathematical form:  

Maximize the linear combination  

 

  
M = c

1
x

1
+ c

2
x

2
+ ...+ c

n
x

n
 (7) 

 

subject to the linear constraints:  

 

 

a11x1 + a12x2 + ...+ a1nxn £ b1
  

a21x1 + a22x2 + ...+ a2nxn £ b2
  

… (8) 
am1x1 + am2x2 + ...+ amnxn £ bm   
x1 ³ 0,x2 ³ 0,..., xn ³ 0  

  

where the ci's, bi's and aij's are given constants.  

 

Any set of values for the xi's that satisfies all the inequalities of (8) is called a 

feasible solution of the problem. A set of values for the xi's that maximizes M 

is called an optimal solution. The linear programming problem asks for an 

optimal, feasible solution.  



 

We will briefly summarize here the basic results about solutions of linear 

programming problems. Each inequality of (8) determines a closed half-space 

of Euclidean n-dimensional space Rn. The intersection of the M + n half-

spaces of (8) gives the set of all feasible values for the xi's. This set, called the 

feasibility set or constraint set, has a very special form. It turns out to be what 

mathematicians call a polygonal convex set.  

 

If some of the constraints are mutually inconsistent, then the 

feasibility set turns out to be empty. In this case, the linear programming 

problem has no solution. Even if the constraint set is nonempty, the problem 

may still have no solution; see Exercise 12 for an example. For this to 

happen, it is necessary, but not sufficient, that the feasibility set be 

unbounded.  

 

If the linear programming problem has a solution, however, then it 

always has one that occurs at one of the vertex points of the constraint set. 

Since there are a finite number of constraints, there will be only a finite 

number of vertices.  

 

In theory, one could solve any linear programming problem by finding 

all of the vertices and then computing the value of M at each vertex. In 

practice, this is not a reasonable way to proceed. Even for a moderate number 

of constraints, the feasibility set may have a very large number of vertices. It 

would be a formidable task, even for a computer, to determine all the 

coordinates of all the vertices.  

 

The algorithm devised by Dantzig and refined by others finds the 

solution in a much more economical fashion. The strategy behind Dantzig's 

approach is simple. Start with any feasible solution that is a vertex of the 

constraint set. Then move to a "nearby" vertex lit which M has a greater 

value. Repeat this process until you arrive at an optimal solution.  

 

Dantzig's algorithm, called the simplex method, not only tells how to 

move from one vertex to another, it also helps find a feasible solution at 

which to start and it gives a method for determining when we have arrived at 

an optimal, feasible solution.  

 

We will devote the major part of this chapter to an elaboration of the 

ideas of the past few paragraphs. Before we do this, however, we will describe 

some problems that can be formulated using linear programming models.  

 
D. More Examples of LP Problems  

 



1. The Breakfast Problem. Zoey and Sydney will only eat cereal for 

breakfast. In fact, they will eat only Brand X or Yukkies. Their mother 

Sherry is concerned about the children receiving adequate 

nourishment in the morning. According to the box tops of the cereals, 

one ounce of Brand X provides 1/3 milligram of iron and 3.8 grams of 

protein, while the same amount of Yukkies offers 1 mg of iron and 2.4 

gm of protein. Sherry wants her children to obtain at least 1 mg of iron 

and 5 gm of protein from their breakfast cereals, but she wants to 

provide these levels of nutrients at the lowest possible cost. If one 

ounce of Brand X costs 4 cents while one ounce of Yukkies sells for 6.5 

cents, how should she mix the cereals to accomplish her goals?  

 

We will let x represent the number of ounces of Brand X to be served and y 

the number of ounces of Yukkies. Then Sherry has the following problem:  

 

Minimize M = 4x + 6.5y 

 

subject to the constraints:  

 

(1/3) x + y ≥ 1, (iron) 

3.8x + 2.4y ≥ 5, (protein) 

x ≥ 0, y ≥ 0. 

 

This type of problem occurs quite frequently in applications. It does not 

precisely fit the format of a linear programming problem as we defined it, but 

we can quickly change that. We need only note that an inequality of the form 

ax + by ≥ c is equivalent to the inequality -ax -by ≤ -c, and that the minimum 

value of a quantity M is equal to the negative of the maximum value of -M. 

Thus we can write Sherry's problem as:  

 

Maximize M = -M = -4x -6.5y 

 

subject to the constraints:  

 

 

- (1/3) x - y ≤ -1, (iron) 

-3.8x - 2.4y ≤ -5, (protein) 

x ≥ 0, y ≥ 0. 

 

so that it fits the definition of an LP problem.  

 

For numerical computations, it is sometimes convenient if the 

coefficients of the constraints are integers. In this problem, we may multiply 



the first constraint by 3 and the second by 10 to obtain the equivalent 

problem:  

 

Maximize M = -4x -6.5y 

 

subject to the constraints:  

x + 3y ≥ 3  
38x + 24y ≥ 50 (9) 

x ≥ 0, y ≥ 0  
 

2. A Smuggling Problem. The Turkish Poppy Company imports heroin into  

the United States to 20 different dealers through 5 different ports. Let xij 

denote the number of pounds to be shipped from port i to dealer j. Since the 

dealers are located in different parts of the country, there is an associated 

cost, cij, of sending 1 pound of heroin from port i to dealer j. The total 

shipping cost M is given by a double sum:  

m = cijxij
i=1

5

å
j=1

20

å  

and the company would like to minimize this cost.  

 

There are two important constraints operating here. First, each dealer 

has ordered a particular amount of heroin that he believes he can sell in his 

area of the market. Thus the company must satisfy the order of each dealer. 

If the jth dealer has ordered dj  pounds, then we have a constraint of the form  

xij = d j
i=1

5

å  

We have one such constraint for each of the 20 dealers.  

 

The second type of constraint arises because the heroin must be 

smuggled into the United States. There are different security measures at 

each of the five ports of entry, so that different amounts of heroin can be 

smuggled through different places. Suppose that the smuggling capacity of 

the ith port is si pounds of heroin. Then the total number of pounds shipped 

from each port cannot exceed the smuggling capacity of that port. We 

formulate this restriction as  

xij
j=1

20

å £ si , i = 1,2,3,4,5  

This description of the smuggling problem requires two 

transformations to convert it into a standard LP problem. First, we need to 

change the minimizing requirement to a maximizing one; we saw how to do 

this when we discussed the breakfast problem. Second, we notice that some of 

the constraints are equations rather than inequalities. This difficulty is also 

easily remedied. We simply note that the equation  



 

ax + by = c 

 

is equivalent to insisting that the inequalities  

ax + by ≥ c  and  ax + by ≤ c 

both hold. Thus we replace each constraint of the form xij = d j
i=1

5

å  by the pair:  

xij £ d j
i=1

5

å   and -xij £ -d j
i=1

5

å  

 

The smuggling problem is an example of what is called a 

"transportation problem." Many of the earliest applications of linear 

programming were to transportation problems and these still provide a fair 

share of LP work. It is not unusual today to solve transportation problems 

involving as many as 3,000 constraints and 15,000 variables.  

 

3.  An Assignment Problem. Mary Muttoni is the chairperson of the 

history department at a small university. One of her duties is to make 

up the teaching schedule. The catalog of the university promises that 

the department will offer four large lecture courses for freshmen next 

term. These are:  

 

History A: A Survey of American History,  

History B: Revolutions and Counterrevolutions,  

History C: European Intellectual History,  

History D: China and Japan.  

 

There are four professors in the department who can teach any of the 

four courses. Because of their different backgrounds, expertise, and 

enthusiasms, they will attract different numbers of students in each course. 

Muttoni estimates the student appeal of each instructor in each course and 

derives a set of enrollment estimates. These are displayed in Table 5.2.  

 

Each professor will be assigned to only one course and each course is to 

be taught by only one faculty member. The chairperson wishes to maximize 

the total enrollment in the four courses by assigning the available professors 

to the different courses.  

 

Table 5.2  

 

               Course 

Professor 
A B C D 

 Doggoff 310 260 270 290 



 Josephs 270 330 250 210 

 Reapingwillst 210 230 190 280 

 Cragdodge 240 210 220 200 

 

We can formulate this problem using linear programming. Let xij be 

the variable which is equal to 1 if the ith professor is assigned to the jth 

course and 0 otherwise. Thus there are 16 variables in the problem. Let eij be 

the number of students the ith professor will attract if he teaches the jth 

course.  

 

The chair's problem is:  

Maximize M = eijxij
j=1

4

å
i=1

4

å  

 

subject to the constraints:  

 

xij
i=1

4

å = 1 ( j= 1 2 3 4) (Each course is assigned to one professor.)   

xij
j=1

4

å = 1( i = 1 2 3 4) (Each professor is assigned one course.)  

and each xij ≥ 0.  

 

E. Vector Formulation of the LP Problem  

 

We wish to give a compact statement of the linear programming 

problem using vector notation. We will denote vectors in this chapter by 

boldface type.  

 

DEFINITION (See Appendix II.) If A is an m  n matrix and x is an n  

1 vector, then Ax is the m  1 vector whose ith component is the 

product of the ith row of A and the vector x; that is,  

   

Ax = y =

y
1

y
2

.

.

.

y
m

æ

è

ç
ç
ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷
÷
÷

 

 

 

where yi = ai1x1 + ai2x2 + ...+ aixn  



 

 DEFINITION If A and B are matrices of the same size, then A ≤ B 

means that aij ≤ bij for all entries of the two matrices. In particular, 

if x and y are k  1 vectors, then x  ≤ y if and only if  

 

x1 ≤ y1,   x2  ≤ y2,  ..., and xk ≤ yk. 

 

The following theorem is easily proved and shows that the notion of 

inequality for matrices has the same features as inequalities for numbers.  

 

THEOREM 1 Suppose A, B, C, and D are matrices of the same size. Then  

a) If A ≤ B and B ≤ C, then A ≤ C;  

b) If A ≤ B and C ≤ D, then A + C ≤ B + D;  

c) If A ≤B, then cA ≤ cB for any positive constant c and cA ≥ cB for any 

negative constant c.  

 

With these properties in mind, we can restate the general linear 

programming problem:  

 

Find an n  1 vector x such that  

 

M = c·x  is maximized (7’) 
 

subject to the constraints  

 

Ax ≤  b, (8’) 
x  ≥  0.  

  

where c is a given 1  n vector, b is a given M  1 vector, A is a given m  n 

matrix and 0 is the zero vector, all of whose components are 0.  
 


