Introduction to the Simplex Method

Class 6

February 24, 2023

Homework and Announcements

Assignment 2: Due On Monday
For Problem 4 and Hillier-Lieberman 3.4-17a: Only need to formulate the problem, not solve it!

Other Hillier-Lieberman problems involve Graphical approach:
Straight lines and convex sets in the plane

Homework and Announcements II

On Assignment 2

Problem 1: Let $N=$ number of possible interviews, say 3 . Then
Expected Value of $N=p_{1} \times 1+p_{2} \times 2+p_{3} \times 3$, where
p_{1} is probability of having exactly 1 interview, p_{2} is probability of having exactly 2 interviews, and p_{3} is probability of having exactly 3 interviews if you follow Optimal Strategy. Note: $p_{1}+p_{2}+p_{3}=1$.

Handout

Linear Programming Part III

The Linear Programming Problem Maximize $Z=\mathbf{c} \cdot \mathbf{x}$
subject to $A \mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$

Linear Programming

A is $m \times n$ matrix of constants and \mathbf{b} is $n \times 1$ vector.
Constraint Set $S=\{\mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$
Example: Fromage Cheese Company Problem $S=\{(x, y): 30 x+12 y \leq 6000,10 x+8 y \leq 2600,4 x+8 y \leq$ 2000, $x \geq 0, y \geq 0\}$

$$
\begin{gathered}
A=\left[\begin{array}{cc}
30 & 12 \\
10 & 8 \\
4 & 8
\end{array}\right] \\
\mathbf{b}=\left[\begin{array}{l}
6000 \\
2600 \\
2000
\end{array}\right]
\end{gathered}
$$

The Simplex Method

George Bernard Dantzig
(November 8, 1914 - May 13, 2005)

A Possible Problem with the Simplex Method

Simplex Method Finds LOCAL Maximum Only
Local Maximum Is Not Necessarily Global Maximum

A Possible Problem with the Simplex Method

Simplex Method Finds LOCAL Maximum Only

A Possible Problem with the Simplex Method

Simplex Method Finds LOCAL Maximum Only

A Possible Problem with the Simplex Method

Simplex Method Finds LOCAL Maximum Only

Could A be local max while D is the global max?

Convex Sets

A set K in R^{n} is convex if the entire line segment connecting any pair of points in the set lies entirely in the set.

Convex Sets

A set K in R^{n} is convex if the entire line segment connecting any pair of points in the set lies entirely in the set.

K is convex if and only if $\{t \mathbf{q}+(1-t) \mathbf{p}\}$ is in K for every \mathbf{p}, \mathbf{q} in K and all $t, 0 \leq t \leq 1$.

Intersection of Convex Sets is Convex

Each LP constraint defines a convex set
Theorem
Let a be any vector in R^{n} and let b be any real number.
Then $H=\left\{\mathbf{x}: \mathbf{a}^{T} \mathbf{x} \leq b\right\}$ is convex.
A similar proof shows that each of these sets is also convex:

$$
\begin{aligned}
& \left\{\mathbf{x}: \mathbf{a}^{T} \mathbf{x} \leq b\right\} \\
& \left\{\mathbf{x}: \mathbf{a}^{T} \mathbf{x}=b\right\} \\
& \left\{\mathbf{x}: \mathbf{a}^{T} \mathbf{x} \geq b\right\}
\end{aligned}
$$

Major Conclusion: The Feasibility Set of an LP Problem is Convex

Theorem

For an LP Problem. any local maximum is a global maximum.

Proof.

Suppose \mathbf{p} is a local maximum and \mathbf{q} is a global maximum with $f(\mathbf{q})>f(\mathbf{p})$ Let \mathbf{r} be any point of the form

$$
\mathbf{r}=\lambda \mathbf{q}+(1-\lambda) \mathbf{p} \text { with } 0<\lambda<1
$$

Then

$$
\begin{aligned}
f(\mathbf{r}) & =\lambda f(\mathbf{q})+(1-\lambda) f(\mathbf{p}) \\
& >\lambda f(\mathbf{p})+(1-\lambda) f(\mathbf{p}) \\
& =f(\mathbf{p})
\end{aligned}
$$

so $f(\mathbf{r})>f(\mathbf{p})$
Thus \mathbf{p} is not a local maximum

GOAL: FIND A SOLUTION ALGORITHM

which will

1. Find an optimal feasible solution, if it exists, in an efficient manner.
2. Tell us if the objective function is unbounded.
3. Tell us if the constraint set is empty.

Using Simplex Method To Solve Fromage Cheese Company Problem

Maximize $\quad Z=4.5 x+4 y$ subject to the constraints :

$$
\begin{array}{r}
30 x+12 y \leq 6000 \\
10 x+8 y \leq 2600 \\
4 x+8 y \leq 2000 \\
x \geq 0, y \geq 0
\end{array}
$$

STEP 1: Introduce slack variables to convert inequalities into equations.

Find nonnegative numbers x, y, u, v, w such that

$$
Z=4.5 x+4 y \text { is maximized }
$$

subject to the constraints :

$$
\begin{aligned}
& 30 x+12 y+u=6000 \\
& 10 x+8 y+v=2600 \\
& 4 x+8 y+w=2000
\end{aligned}
$$

$$
x \geq 0, y \geq 0, u \geq 0, v \geq 0, w \geq 0
$$

$$
\left.\begin{array}{c}
x \\
y
\end{array}\right) u \text { v } \begin{gathered}
w \\
{\left[\begin{array}{ccccc}
30 & 12 & 1 & 0 & 0 \\
10 & 8 & 0 & 1 & 0 \\
4 & 8 & 0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

For the cheese example, the solution

$$
\begin{aligned}
& x=0, \quad y=0, \\
& u=6000, \quad v=2600, w=2000 .
\end{aligned}
$$

is both feasible and basic.

The basic variables are u, v, and w.

Geometrically, this solution is located at the vertex where the two edges $x=0$ and $y=0$ intersect.

This particular solution gives $Z=0$, which is clearly not optimal. We can increase $Z=4.5 x+4 y$ by increasing either x or y.

One way to go about this is to concentrate on increasing one of the variables.

Since a unit increase in x boosts Z more than a unit increase in y, it is reasonable to begin by making x as large as possible, while keeping $y=0$. When $y=0$, our equations can be written

$$
\begin{aligned}
& u=6000-30 x \\
& v=2600-10 x \\
& w=2000-4 x
\end{aligned}
$$

Increase x as much as possible until we drive one of the current basic variables to 0 .

$$
\begin{aligned}
& u=0 \text { when } 30 x=6000 ; \text { that is, } x=6000 / 30=200 \\
& v=0 \text { when } 10 x=2600 ; \text { that is, } x=2600 / 10=260 \\
& w=0 \text { when } 4 x=2000 ; \text { that is, } x=2000 / 4=500
\end{aligned}
$$

The Fromage Cheese Company problem can be formulated as:

Find nonnegative values of x, y, u, v, w such that:

$$
\begin{gathered}
30 x+12 y+u=6000 \\
10 x+8 y+v=2600 \\
4 x+8 y+w=2000 \\
-4.5 x-4 y+Z=0
\end{gathered}
$$

and so that Z is as large as possible. (We have represented the objective function as an equation)

We'll put the equation for the objective function first:

$$
\begin{gathered}
-4.5 x-4 y+Z=0 \\
30 x+12 y+u=6000, \\
10 x+8 y+v=2600, \\
4 x+8 y+w=2000 .
\end{gathered}
$$

We write the matrix of coefficients) in a special form, called the extended simplex tableau (Tableau 5.1).

Tableau 5.1

\boldsymbol{Z}	x	y	u	v	w		
\boldsymbol{Z}	$\mathbf{1}$	-4.5	-4	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
u	0	30	12	1	0	0	6000
v	0	10	8	0	1	0	2600
w	0	4	8	0	0	1	2000
		\uparrow					

x will enter the basis

Tableau 5.2

	Z			y		v	w	
	Z	1	-4.5	-4	0	0	0	0
$\frac{6000}{30}=200$	u	0	[30]	12	1	0	0	6000
$\frac{2660}{10}=260$	v	0	10	8	0	1	0	2600
$\frac{2000}{4}=500$	w	0	4	8	0	0	1	2000
			\uparrow					

x will enter the basis
u will leave the basis

Divide u-row by 30 :

Tableau 5.2.1

| | Z | x | y | u | v | w | |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Z | $\mathbf{1}$ | - | -4 | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| | | 4.5 | | | | | |
| u | 0 | $\mathbf{1}$ | $2 / 5$ | $1 / 30$ | 0 | 0 | 200 |
| v | 0 | 10 | 8 | 0 | 1 | 0 | 2600 |
| w | 0 | 4 | 8 | 0 | 0 | 1 | 2000 |
| | | \uparrow | | | | | |

Subtract (-4.5) *u-row from Z-row
Subtract (10) * u-row from v-row
Subtract (4) * u-row from w-row

Tableau 5.3

	Z	x	y	u	v	w	
Z	$\mathbf{1}$	$\mathbf{0}$	$-11 / 5$	$3 / 20$	0	0	900
x	0	1	$2 / 5$	$1 / 30$	0	0	200
v	0	0	4	$-1 / 3$	1	0	600
w	0	0	$32 / 5$	$-2 / 15$	0	1	1200
			\uparrow				

Tableau 5.4

	Z		x	y	u	v	w	
	Z	1	0	-11/5	3/20	0	0	900
$\frac{200}{2015}=500$	x	0	1	2/5	1/30	0	0	200
$\frac{600}{4}=150$	v	0	0	[4]	- 1/3	1	0	600
$\frac{1200}{3215}=187 \frac{1}{2}$	w	0	0	32/5	- $2 / 15$	0	1	1200
				\uparrow				

y will enter the basis
v will leave the basis

Divide v-row by 4
Subtract (-11/5)* new v-row from Z-row
Subtract (2/5)* new v-row from x-row
Subtract (32/5)* new v-row from w-row
Result is

Tableau 5.5.0

| | Z | x | y | u | v | w | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Z | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $-\mathbf{- 1 / 3 0}$ | $\mathbf{1 1 / 2 0}$ | $\mathbf{0}$ | $\mathbf{1 2 3 0}$ |
| x | 0 | 1 | 0 | $1 / 15$ | $-1 / 10$ | 0 | 140 |
| y | 0 | 0 | 1 | $-1 / 12$ | $1 / 4$ | 0 | 150 |
| w | 0 | 0 | 0 | $2 / 5$ | $-8 / 3$ | 1 | 240 |
| | | | | | | | |

Tableau 5.5

	Z		x	y	u	V	w	
	Z	1	0	0	-1/30	11/20	0	1230
$\frac{140}{1115}=2100$	x	0	1	0	1/15	-1/10	0	140
	y	0	0	1	- 1/12	1/4	0	150
$\frac{240}{215}=600$	w	0	0	0	[2/5]	-8/3	1	240
					\uparrow			

u will enter the basis
w will leave the basis

Divide w-row by \qquad
Subtract (-__)* new w-row from Z-row
Subtract (___)* new w-row from x-row
Subtract (__)* new v-row from y-row

Tableau 5.6

| Z | x | y | u | v | w | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Z | 1 | 0 | 0 | 0 | $5 / 12$ | $\mathbf{1} / 12$ | 1250 |
| x | 0 | 1 | 0 | 0 | $1 / 6$ | $-1 / 6$ | 100 |
| y | 0 | 0 | 1 | 0 | $-1 / 12$ | $5 / 24$ | 200 |
| u | 0 | 0 | 0 | 1 | -4 | $5 / 2$ | 600 |

The new basic feasible solution is
$x=100, y=200, u=600, v=w=0$, and $Z=1250$.

