## Introduction to the Simplex Method

Class 6

February 24, 2023

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Assignment 2: Due On Monday

For Problem 4 and Hillier-Lieberman 3.4-17a: Only need to **formulate** the problem, not solve it!

Other Hillier-Lieberman problems involve Graphical approach: Straight lines and convex sets in the plane

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Homework and Announcements II

## On Assignment 2

Problem 1: Let N = number of possible interviews, say 3. Then Expected Value of  $N = p_1 \times 1 + p_2 \times 2 + p_3 \times 3$ ,

where

 $p_1$  is probability of having **exactly** 1 interview,  $p_2$  is probability of having **exactly** 2 interviews, and  $p_3$  is probability of having **exactly** 3 interviews if you follow Optimal Strategy. Note:  $p_1 + p_2 + p_3 = 1$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Handout

#### Linear Programming Part III



# The Linear Programming Problem Maximize $Z = \mathbf{c} \cdot \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b},$ $\mathbf{x} \geq \mathbf{0}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

### Linear Programming

A is  $m \times n$  matrix of constants and **b** is  $n \times 1$  vector.

Constraint Set  $S = {\mathbf{x} : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}}$ 

Example: Fromage Cheese Company Problem  $S = \{(x, y) : 30x + 12y \le 6000, 10x + 8y \le 2600, 4x + 8y \le 2000, x \ge 0, y \ge 0\}$ 

$$A = \begin{bmatrix} 30 & 12\\ 10 & 8\\ 4 & 8 \end{bmatrix}$$
$$\mathbf{b} = \begin{bmatrix} 6000\\ 2600\\ 2000 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## The Simplex Method



George Bernard Dantzig (November 8, 1914 - May 13, 2005)

・ロン ・四 と ・ 田 ・ ・ 田



・ロト ・ 同ト ・ ヨト ・ ヨト

#### Simplex Method Finds LOCAL Maximum Only

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### Simplex Method Finds LOCAL Maximum Only



<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

#### Simplex Method Finds LOCAL Maximum Only



Could A be local max while D is the global max?

(日) (四) (日) (日) (日)

## Convex Sets

A set K in  $\mathbb{R}^n$  is **convex** if the entire line segment connecting any pair of points in the set lies entirely in the set.



(日) (四) (日) (日) (日)

## Convex Sets

A set K in  $\mathbb{R}^n$  is **convex** if the entire line segment connecting any pair of points in the set lies entirely in the set.



K is convex if and only if  $\{t\mathbf{q} + (1-t)\mathbf{p}\}\$  is in K for every  $\mathbf{p}$ ,  $\mathbf{q}$  in K and all  $t, 0 \le t \le 1$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Intersection of Convex Sets is Convex

#### Each LP constraint defines a convex set

#### Theorem

Let **a** be any vector in  $\mathbb{R}^n$  and let b be any real number. Then  $H = {\mathbf{x} : \mathbf{a}^T \mathbf{x} \le b}$  is convex.

A similar proof shows that each of these sets is also convex:  $\{ \mathbf{x} : \mathbf{a}^T \mathbf{x} \le b \}$   $\{ \mathbf{x} : \mathbf{a}^T \mathbf{x} = b \}$   $\{ \mathbf{x} : \mathbf{a}^T \mathbf{x} \ge b \}$ 

#### Major Conclusion: The Feasibility Set of an LP Problem is Convex

Theorem

For an LP Problem. any local maximum is a global maximum.

Proof.

Suppose **p** is a local maximum and **q** is a global maximum with  $f(\mathbf{q}) > f(\mathbf{p})$  Let **r** be any point of the form

$$\mathbf{r} = \lambda \mathbf{q} + (1 - \lambda) \mathbf{p}$$
 with  $0 < \lambda < 1$ 

Then

$$f(\mathbf{r}) = \lambda f(\mathbf{q}) + (1 - \lambda)f(\mathbf{p})$$
  
>  $\lambda f(\mathbf{p}) + (1 - \lambda)f(\mathbf{p})$   
=  $f(\mathbf{p})$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

so  $f(\mathbf{r}) > f(\mathbf{p})$ Thus  $\mathbf{p}$  is not a local maximum

#### GOAL: FIND A SOLUTION ALGORITHM

which will

1. Find an optimal feasible solution, if it exists, in an efficient manner.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 2. Tell us if the objective function is unbounded.
- 3. Tell us if the constraint set is empty.

## Using Simplex Method To Solve Fromage Cheese Company Problem

Maximize Z = 4.5x + 4y

subject to the constraints :

 $30x + 12y \le 6000,$  $10x + 8y \le 2600,$  $4x + 8y \le 2000.$  $x \ge 0, y \ge 0$ 

STEP 1: Introduce slack variables to convert inequalities into equations.

Find nonnegative numbers x, y, u, v, w such that Z = 4.5x + 4y is maximized subject to the constraints : 30x + 12y + u = 6000, 10x + 8y + v = 2600, 4x + 8y + w = 2000, $x \ge 0, y \ge 0, u \ge 0, v \ge 0, w \ge 0,$ 



For the cheese example, the solution

 $x = 0, \quad y = 0,$  $u = 6000, \quad v = 2600, \quad w = 2000.$ 

is both feasible and basic.

The basic variables are *u*, *v*, and *w*.

Geometrically, this solution is located at the vertex where the two edges x = 0 and y = 0 intersect.



This particular solution gives Z = 0, which is clearly not optimal. We can increase Z = 4.5x + 4yby increasing either x or y.

One way to go about this is to concentrate on increasing one of the variables.

Since a unit increase in x boosts Z more than a unit increase in y, it is reasonable to begin by making x as large as possible, while keeping y = 0. When y = 0, our equations can be written

$$u = 6000 - 30x, v = 2600 - 10x, w = 2000 - 4x.$$

Increase *x* as much as possible until we drive one of the current basic variables to 0.

u = 0 when 30x = 6000; that is, x = 6000/30 = 200v = 0 when 10x = 2600; that is, x = 2600/10 = 260w = 0 when 4x = 2000; that is, x = 2000/4 = 500 The Fromage Cheese Company problem can be formulated as:

Find nonnegative values of *x*, *y*, *u*, *v*, *w* such that:

$$30x + 12y + u = 6000,$$
  

$$10x + 8y + v = 2600,$$
  

$$4x + 8y + w = 2000.$$
  

$$-4.5x - 4y + Z = 0$$

and so that Z is as large as possible. (We have represented the objective function as an equation) We'll put the equation for the objective function first:

$$-4.5x - 4y + Z = 0$$
  

$$30x + 12y + u = 6000,$$
  

$$10x + 8y + v = 2600,$$
  

$$4x + 8y + w = 2000.$$

We write the matrix of coefficients) in a special form, called the *extended simplex tableau* (Tableau 5.1).

# Tableau 5.1

|   | Z | x          | у  | U | v | w |      |
|---|---|------------|----|---|---|---|------|
| Z | 1 | -4.5       | -4 | 0 | 0 | 0 | 0    |
| u | 0 | 30         | 12 | 1 | 0 | 0 | 6000 |
| v | 0 | 10         | 8  | 0 | 1 | 0 | 2600 |
| w | 0 | 4          | 8  | 0 | 0 | 1 | 2000 |
|   |   | $\uparrow$ |    |   |   |   |      |

x will enter the basis

|                         |   | Z | x          | у  | U | υ | w |      |
|-------------------------|---|---|------------|----|---|---|---|------|
|                         | Z | 1 | -4.5       | -4 | 0 | 0 | 0 | 0    |
| $\frac{6000}{30} = 200$ | u | 0 | [30]       | 12 | 1 | 0 | 0 | 6000 |
| $\frac{2600}{10} = 260$ | v | 0 | 10         | 8  | 0 | 1 | 0 | 2600 |
| $\frac{2000}{4} = 500$  | w | 0 | 4          | 8  | 0 | 0 | 1 | 2000 |
|                         |   |   | $\uparrow$ |    |   |   |   |      |

x will enter the basis u will leave the basis

Divide *u*-row by 30:

Tableau 5.2.1

|   | Z | x          | у   | U    | v | w |      |
|---|---|------------|-----|------|---|---|------|
| Z | 1 | -          | -4  | 0    | 0 | 0 | 0    |
|   |   | 4.5        |     |      |   |   |      |
| u | 0 | 1          | 2/5 | 1/30 | 0 | 0 | 200  |
| v | 0 | 10         | 8   | 0    | 1 | 0 | 2600 |
| w | 0 | 4          | 8   | 0    | 0 | 1 | 2000 |
|   |   | $\uparrow$ |     |      |   |   |      |

Subtract (-4.5) \**u*-row from *Z*-row Subtract (10) \* *u*-row from *v*-row Subtract (4) \* *u*-row from *w*-row

|   | Z | x | У          | U      | v | w |      |
|---|---|---|------------|--------|---|---|------|
| Z | 1 | 0 | -11/5      | 3/20   | 0 | 0 | 900  |
| x | 0 | 1 | 2/5        | 1/30   | 0 | 0 | 200  |
| v | 0 | 0 | 4          | - 1/3  | 1 | 0 | 600  |
| w | 0 | 0 | 32/5       | - 2/15 | 0 | 1 | 1200 |
|   |   |   | $\uparrow$ |        |   |   |      |



|                                      |   | Z | x | У          | U      | v | W |      |
|--------------------------------------|---|---|---|------------|--------|---|---|------|
|                                      | Z | 1 | 0 | -11/5      | 3/20   | 0 | 0 | 900  |
| $\frac{200}{2/5} = 500$              | x | 0 | 1 | 2/5        | 1/30   | 0 | 0 | 200  |
| $\frac{600}{4} = 150$                | υ | 0 | 0 | [4]        | - 1/3  | 1 | 0 | 600  |
| $\frac{1200}{32/5} = 187\frac{1}{2}$ | w | 0 | 0 | 32/5       | - 2/15 | 0 | 1 | 1200 |
|                                      |   |   |   | $\uparrow$ |        |   |   |      |

y will enter the basis v will leave the basis

Divide *v*-row by 4 Subtract  $(-11/5)^*$  new *v*-row from *Z*-row Subtract  $(2/5)^*$  new *v*-row from *x*-row Subtract  $(32/5)^*$  new *v*-row from *w*-row

Result is



|                           |   | Z | x | у | u          | V     | w |      |
|---------------------------|---|---|---|---|------------|-------|---|------|
|                           | Z | 1 | 0 | 0 | -1/30      | 11/20 | 0 | 1230 |
| $\frac{140}{1/15} = 2100$ | x | 0 | 1 | 0 | 1/15       | -1/10 | 0 | 140  |
|                           | у | 0 | 0 | 1 | - 1/12     | 1/4   | 0 | 150  |
| $\frac{240}{2/5} = 600$   | w | 0 | 0 | 0 | [2/5]      | -8/3  | 1 | 240  |
|                           |   |   |   |   | $\uparrow$ |       |   |      |

u will enter the basis w will leave the basis

Divide *w*-row by \_\_\_\_\_

Subtract (-\_\_\_)\* new *w*-row from *Z*-row

Subtract (\_\_\_\_)\* new *w*-row from *x*-row

Subtract (\_\_\_\_)\* new *v*-row from *y*-row

|   | Z | x | у | u | υ           | w    |      |
|---|---|---|---|---|-------------|------|------|
| Z | 1 | 0 | 0 | 0 | <b>5/12</b> | 1/12 | 1250 |
| x | 0 | 1 | 0 | 0 | 1/6         | -1/6 | 100  |
| y | 0 | 0 | 1 | 0 | -1/12       | 5/24 | 200  |
| u | 0 | 0 | 0 | 1 | -4          | 5/2  | 600  |

The new basic feasible solution is

x = 100, y = 200, u = 600, v = w = 0, and Z = 1250.(0,250)*w* = 0 (100, 200)200 (140, 150) $\upsilon = 0$ 150 x = 0100 *u* = 0 50 Ы 100 y = 0 50 (0,0) 150 (200,0)