Constraint Sets for Linear Programming

Class 5

February 22, 2023

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Our Hero

(ロ)、(型)、(E)、(E)、 E) の(()

Reading

Linear Programming II Notes: Convex Sets (on line)

<ロト <回ト < 注ト < 注ト

ж

Review: Behavior of Linear Objective Functions

Suppose f is a nonconstant linear function defined on a set S.

If f has a maximum on S, then it must occur on the boundary of S.

If S has a polygonal boundary, then the maximum value will occur at a vertex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Linear Functions on Polygonal Sets

THE MAXIMUM VALUE OF A LINEAR **FUNCTION** ON A POLYGONAL SET, IF IT EXISTS, **ALWAYS OCCURS AT A** VERTEX

Level Sets

Let $S \subset R^n$ and $f: S \to R$ be a real-valued function defined on S

Then a **level set** for f is a set $L_k = {\mathbf{x} : f(\mathbf{x}) = k}$ for some constant k.

For a **linear** function, level set = {
$$\mathbf{x} : \mathbf{c}^T \mathbf{x} = k$$
}
= { $\mathbf{x} : c_1 x_1 + c_2 x_2 + c_3 x_3 + ... + c_n x_n = k$ }

n = 2: line in the plane n = 3: plane in 3-space n = 4 flat 3-space in 4-space

In general, a level set is an n-1 hyperplane in \mathbb{R}^n . These level sets form a collection of parallel hyperplanes filling up \mathbb{R}^n .

Moreover, the vector \mathbf{c} is perpendicular to each of the these hyperplanes and points in the direction of increasing values of f.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Important Types of Constrained Linear Objective Function Problems

1. Integer Programming

 $Z^n = \{ \mathbf{x} \in R^n : \text{all components of } \mathbf{x} \text{ are integers } \}$ $S \subset Z^N$

Examples: Assignment Problem, Sudoku

2. Combinatorial Programming

S is the set of all permutations of the first n positive integers *Example*: Traveling Salesperson's Problem

3. Linear Programming

TSP: Traveling Salesperson's Problem

You must visit *n* cities, denoted 1,2,3,..., *n* in some order. There is a certain cost c_{ij} in traveling from city *i* to city *j*. *Problem*: Choose the order that minimizes total cost.

Order = (1,2,3,4) has Cost = $c_{12} + c_{23} + c_{34}$ Order = (3,1,2,4) has Cost = $c_{31} + c_{12} + c_{24}$

TSP of 50 state capitols: n = 50Number of different orderings $= 50! \approx 3.04 \times 10^{64}$ Brute Force Attack? Check one billion per second: 9.6×10^{47} years.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Age of Universe: 2×10^{10} years.

Linear Programming

A is $m \times n$ matrix of constants and **b** is $n \times 1$ vector.

Constraint Set $S = {\mathbf{x} : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}}$

Example: Fromage Cheese Company Problem $S = \{(x, y) : 30x + 12y \le 6000, 10x + 8y \le 2600, 4x + 8y \le 2000, x \ge 0, y \ge 0\}$

$$A = \begin{bmatrix} 30 & 12\\ 10 & 8\\ 4 & 8 \end{bmatrix}$$
$$\mathbf{b} = \begin{bmatrix} 6000\\ 2600\\ 2000 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Level Sets for Fromage Cheese Company Problem

$$f := R^2 \rightarrow R \text{ by } f(x, y) = 4.5x + 4y$$

Level set with level k is set of solutions of $4.5x + 4y = k$
This is a line containing
 $(0, \frac{k}{4}) \text{ and } (\frac{2k}{9}, 0)$

(ロ)、(型)、(E)、(E)、 E) の(()

Orthogonality of **c** to Level Sets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Fromage Cheese Company Problem

Assortment	Cheddar	Swiss	Brie	Price	Number of Packages
Fancy	30	10	4	\$4.50	X
Deluxe	12	8	8	\$4.00	у
Available	6000	2600	2000		

Note: All quantities of cheeses are in ounces

Question: How many packages of each mixture should we make that will maximize revenue but not exceed our cheese supplies?

Problem: Maximize M = 4.5x + 4ysubject to constraints $30x + 12y \le 6000$ (Cheddar) $10x + 8y \le 2600$ (Swiss) $4x + 8y \le 2000$ (Brie) $x, y \ge 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Linear Programming

A is $m \times n$ matrix of constants and **b** is $n \times 1$ vector.

Constraint Set $S = {\mathbf{x} : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}}$

Example: Fromage Cheese Company Problem $S = \{(x, y) : 30x + 12y \le 6000, 10x + 8y \le 2600, 4x + 8y \le 2000, x \ge 0, y \ge 0\}$

$$A = \begin{bmatrix} 30 & 12 \\ 10 & 8 \\ 4 & 8 \end{bmatrix}$$
$$\mathbf{b} = \begin{bmatrix} 6000 \\ 2600 \\ 2000 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Our Hero

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Boundary Constraint	x-intercept	y-intercept	color
30x + 12y = 6000	(200,0)	(0,500)	blue
10x + 8y = 2600	(260,0)	(0,325)	red
4x + 8y = 2000	(500,0)	(0,250)	green

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Fromage Problem: Maximize 4.5x + 4y

Boundary Constraint	x-intercept	y-intercept	color
30x + 12y = 6000	(200,0)	(0,500)	blue
10x + 8y = 2600	(260,0)	(0,325)	red
4x + 8y = 2000	(500,0)	(0,250)	green

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Fromage Problem: Maximize 4.5x + 4y

Boundary Constraint	x-intercept	y-intercept	color
30x + 12y = 6000	(200,0)	(0,500)	blue
10x + 8y = 2600	(260,0)	(0,325)	red
4x + 8y = 2000	(500,0)	(0,250)	green

・ロト・西ト・山田・山田・山口・

The Constraint Set for the Fromage Cheese Company Problem

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Vertex	(0,0)	(200,0)	(140,150)	(100,200)	(0,250)
Revenue	0	900	1230	1250	1000

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

GOAL: FIND A SOLUTION ALGORITHM

which will

1. Find an optimal feasible solution, if it exists, in an efficient manner.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 2. Tell us if the objective function is unbounded.
- 3. Tell us if the constraint set is empty.

An LP problem need not have an optimal feasible solution. The objective function could be unbounded.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

THE SIMPLEX METHOD IS A SOLUTION ALGORITHM

which

1. Finds an optimal feasible solution, if it exists, in an efficient manner.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 2. Tells us if the objective function is unbounded.
- 3. Tells us if the constraint set is empty.

The Simplex Method

George Bernard Dantzig (November 8, 1914 - May 13, 2005)

◆□ > ◆□ > ◆□ > ◆□ > ● □

Linear Programming

A is $m \times n$ matrix of constants and **b** is $n \times 1$ vector.

Constraint Set $S = {\mathbf{x} : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}}$

Example: Fromage Cheese Company Problem $S = \{(x, y) : 30x + 12y \le 6000, 10x + 8y \le 2600, 4x + 8y \le 2000, x \ge 0, y \ge 0\}$

$$A = \begin{bmatrix} 30 & 12 \\ 10 & 8 \\ 4 & 8 \end{bmatrix}$$
$$\mathbf{b} = \begin{bmatrix} 6000 \\ 2600 \\ 2000 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

A is $m \times n$ matrix of constants and **b** is $n \times 1$ vector.

Constraint Set $S = {\mathbf{x} : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}}$

Each row of $A\mathbf{x} \leq \mathbf{b}$ is an inequality of the form $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n \leq b_i$ which is the equation of a closed half-space in \mathbb{R}^n .

S is the intersection of a finite number of closed half-spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A Closed Half-Space is Convex

A set S is **convex** means that whenever P and Q are points in S, then so is every point on the line segment between P and Q.

Let *H* be a half-space. Then $H = \{\mathbf{x} : \mathbf{a}^T \cdot \mathbf{x} \le b\}$ for some vector **a** and some constant *b*. Suppose **y** and **z** belong to *H* so $\mathbf{a}^T \cdot \mathbf{y} \le b$ and $\mathbf{a}^T \cdot \mathbf{z} \le b$ Let **x** be an any point on the line segment between **y** and **z** Then $\mathbf{x} = t\mathbf{y} + (1 - t)\mathbf{z}$ for some *t* between 0 and 1. We need to show $\mathbf{a}^T \cdot \mathbf{x} \le b$ $\mathbf{a}^T \cdot \mathbf{x} = \mathbf{a}^T \cdot (t\mathbf{y} + (1 - t)\mathbf{z}) = \mathbf{a}^T \cdot (t\mathbf{y}) + \mathbf{a}^T \cdot ((1 - t)\mathbf{z})$ $= t(\mathbf{a}^T \cdot \mathbf{y}) + (1 - t)(\mathbf{a}^T \cdot \mathbf{z}) \le tb + (1 - t)b = b.$

(日)(日

Theorem: The intersection of any collection of convex sets is convex.

Proof: Let P and Q belong to the intersection and let R be any point on the line segment between P and Q.

Since P and Q belong to the intersection, they belong to each of the convex sets in the collection.

But each set in the collection is convex.

So R belongs to each set in the collection and hence R belongs to the intersection.

Corollary: The constraint set in a Linear Programming Problem is convex.

Proof: The constraint set is the intersection of a finite collection of half-spaces, each of which is convex.