Introduction to Operations Research

Class 4

February 20, 2023

Homework

Notes on Assignment 1
Assignment 2: Problem 3: Should be able to run FirstSimulation directly from the webpage or you can copy FirstSimulation.html from Handout Folder to your desktop

General Mathematical Programming Problem

Given
A set $S \subset R^{n}$ called the Constraint Set
and
A real-valued function $f: S \rightarrow R^{1}$ called the Objective Function
Want

$$
\sup _{\mathbf{x} \in S} f(\mathbf{x})
$$

Review: Behavior of Linear Objective Functions

Last Time: informal argument that if \mathbf{x} is an interior point of the constraint set, then we can increase the value of a linear objective function f by moving to a point of the form $\mathbf{x}+\lambda \mathbf{c}$ if $\lambda>0$.

Thus if f has a maximum on S, then it must occur on the boundary of S.

If S is two-dimensional with a polygonal boundary, then the maximum value will occur at a vertex.

A More Formal Approach

Theorem
If a constrained optimization problem with a linear objective function has an optimal feasible solution at some point, then that point is on the boundary of the constraint set

Recall: norm of a vector $\mathbf{x}=|\mathbf{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}$ and

$$
\mathbf{v} \cdot \mathbf{v}=|\mathbf{v}|^{2}
$$

If \mathbf{x}_{0} is an interior point of S, then there is a positive number r such that

$$
B=\left\{\mathbf{x}:\left|\mathbf{x}-\mathbf{x}_{0}\right|<r\right\} \subset S
$$

B is called the Open Ball of radius r centered at x_{0}.

Geometrically, from \mathbf{x}_{0}, it is possible to look in all directions a positive distance r and see only points of S.
In particular, we can move some positive distance in the direction of \mathbf{c} along a line segment that lies entirely in S.

Even more specifically, the point

$$
\mathbf{y}=\mathbf{x}_{0}+\frac{r}{2|\mathbf{c}|} \mathbf{c}
$$

lies inside S for

$$
\left|\mathbf{y}-\mathbf{x}_{0}\right|=\left|\frac{r}{2|\mathbf{c}|} \mathbf{c}\right|=\frac{r}{2|\mathbf{c}|}|\mathbf{c}|=\frac{r}{2}<r
$$

Thus \mathbf{y} is a feasible solution.

Proof: No Maximum at an Interior Point

$$
\begin{gathered}
f(\mathbf{y})=\mathbf{c}^{T} y \\
=\mathbf{c}^{T}\left(\mathbf{x}_{0}+\frac{r}{2|\mathbf{c}|} \mathbf{c}\right) \\
=\mathbf{c}^{T} \mathbf{x}_{0}+\frac{r}{2|\mathbf{c}|} \mathbf{c}^{T} \mathbf{c} \\
=\mathbf{c}^{T} \mathbf{x}_{0}+\frac{r}{2|\mathbf{c}|}|\mathbf{c}|^{2} \\
= \\
f\left(\mathbf{x}_{0}\right)+\frac{r}{2}|\mathbf{c}|>f\left(\mathbf{x}_{0}\right)
\end{gathered}
$$

Linear Functions on the Boundary of S

Now suppose \mathbf{x} is on the boundary of S and there is some vector \mathbf{d} so that $\mathbf{x}+t \mathbf{d}$ is also contained in the boundary of S for all sufficiently small t; that is, t can range over some interval containing both positive and negative numbers.
Then

$$
f(\mathbf{x}+t \mathbf{d})=\mathbf{c}^{T}(\mathbf{x}+t \mathbf{d})=\mathbf{c}^{T} \mathbf{x}+t \mathbf{c}^{T} \mathbf{d}=f(\mathbf{x})+t\left(\mathbf{c}^{T} \mathbf{d}\right)
$$

$\mathbf{c}^{T} \cdot \mathbf{d}>0$: increase f by moving in direction of \mathbf{d} for $t>0$
$\mathbf{c}^{T} \cdot \mathbf{d}=0$: No change in value of f
$\mathbf{c}^{T} \cdot \mathbf{d}<0$: increase f by moving in direction of \mathbf{d} for $t<0$

Linear Functions on Polygonal Sets

$$
\begin{gathered}
\text { THE MAXIMUM VALUE } \\
\text { OF A LINEAR } \\
\text { FUNCTION } \\
\text { ON A POLYGONAL SET, } \\
\text { IF IT EXISTS, } \\
\text { ALWAYS OCCURS AT A } \\
\text { VERTEX }
\end{gathered}
$$

A POLYGONAL SET HAS ONLY FINITELY MANY VERTICES

Our Hero

Level Sets

Let $S \subset R^{n}$ and $f: S \rightarrow R$ be a real-valued function defined on S
Then a level set for f is a set $A=\{\mathbf{x}: f(\mathbf{x})=k\}$ for some constant k.
Examples:

1. $f: R^{2} \rightarrow R$ by $f(x, y)=x^{2}+y^{2}$

Then $\{\mathbf{x}: f(\mathbf{x})=1\}$ is the unit circle
2. $f: R^{3} \rightarrow R$ by $f(x, y, z)=x^{2}+y^{2}+z^{2}$

Then $\{\mathbf{x}: f(\mathbf{x})=9\}$ is a sphere of radius 3 , center at origin.
3. If f is a temperature, then a level set for f is an isotherm.
4. If f is a utility function, then a level set for f is an indifference curve.

Indifference Curves Are Level Sets

Today's Isotherms

Today's Surface Temperatures

Level Sets for Fromage Cheese Company Problem

$$
f:=R^{2} \rightarrow R \text { by } f(x, y)=4.5 x+4 y
$$

Level set with level k is set of solutions of $4.5 x+4 y=k$
This is a line containing
$\left(0, \frac{k}{4}\right)$ and $\left(\frac{2 k}{9}, 0\right)$

Level Sets for Linear Function

$$
\begin{aligned}
& \text { For a linear function, level set }=\left\{\mathbf{x}: \mathbf{c}^{T}(x)=k\right\} \\
& =\left\{\mathbf{x}: c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}=k\right\} \\
& \qquad \begin{array}{c}
n=2: \text { line in the plane } \\
n=3: \text { plane in 3-space } \\
n=4 \text { flat 3-space in 4-space }
\end{array}
\end{aligned}
$$

In general, a level set is an $n-1$ hyperplane in R^{n}.
These level sets form a collection of parallel hyperplanes filling up R^{n}. Moreover, the vector \mathbf{c} is perpendicular to each of the these hyperplanes and points in the direction of increasing values of f.
线

Orthogonality of \mathbf{c} to Level Sets

Verify claim that the vector \mathbf{c} is perpendicular to each of the level sets of f :

Let $L_{k}=\left\{\mathbf{x}: \mathbf{c}^{T} \mathbf{x}=k\right\}$
Suppose \mathbf{x} and \mathbf{y} are in L_{k}.
Then examine $\mathbf{v}=\mathbf{x}-\mathbf{y}$
and $\mathbf{c}^{T} \mathbf{v}=c^{T}(\mathbf{x}-\mathbf{y})=c^{T} \mathbf{x}-c^{T} \mathbf{y}=k-k=0$
Thus \mathbf{c} is orthogonal to L_{k}.

A Geometric Way To Solve Mathematical Programming Problems with Linear Objective Functions?

Pick any \mathbf{x} in the constraint set S
Let L_{k} be the level curve through \mathbf{x}.
Then \mathbf{c} is perpendicular to L_{k}.
Slide L_{k} along \mathbf{c}, staying parallel to L_{k} until we hit "last point" of S.

Could this be the foundation for a geometric solution to a Mathematical Programming Problem with a Linear Objective Function?

Problems with the Geometric Approach

How do pick an initial point \mathbf{x} in S ?
How do we know when we have hit the "last" point of of S ?

Important Types of Constrained Linear Objective Function Problems

1. Integer Programming

$$
\begin{gathered}
Z^{n}=\left\{\mathbf{x} \in R^{n}: \text { all components of } \mathbf{x} \text { are integers }\right\} \\
S \subset Z^{N}
\end{gathered}
$$

Examples: Assignment Problem, Sudoku
2. Combinatorial Programming
S is the set of all permutations of the first n positive integers
Example: Traveling Salesperson's Problem
3. Linear Programming

TSP: Traveling Salesperson's Problem

You must visit n cities, denoted $1,2,3, \ldots, n$ in some order.
There is a certain cost $c_{i j}$ in traveling from city i to city j.
Problem: Choose the order that minimizes total cost.
Order $=(1,2,3,4)$ has Cost $=c_{12}+c_{23}+c_{34}$
Order $=(3,1,2,4)$ has Cost $=c_{31}+c_{12}+c_{24}$
TSP of 50 state capitols: $n=50$
Number of different orderings $=50!\approx 3.04 \times 10^{64}$
Brute Force Attack? Check one billion per second: 9.6×10^{47} years.
Age of Universe: 2×10^{10} years.

Linear Programming

A is $m \times n$ matrix of constants and \mathbf{b} is $n \times 1$ vector.
Constraint Set $S=\{\mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$
Example: Fromage Cheese Company Problem $S=\{(x, y): 30 x+12 y \leq 6000,10 x+8 y \leq 2600,4 x+8 y \leq$ 2000, $x \geq 0, y \geq 0\}$

$$
\begin{gathered}
A=\left[\begin{array}{cc}
30 & 12 \\
10 & 8 \\
4 & 8
\end{array}\right] \\
\mathbf{b}=\left[\begin{array}{l}
6000 \\
2600 \\
2000
\end{array}\right]
\end{gathered}
$$

