Introduction to Operations Research

Class 3

February 17, 2023

(ロ)、(型)、(E)、(E)、 E) の(()

Handouts etc.

Assignment 2 (Due Monday, February 27) Some Problems

Your solutions to the variations of the job interview problem should include a clear statement of your suggested optimal policy.

Note on Readings for Assignment 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some Problems

(A) Fromage Problem Maximize M = f(x, y) = 4.5x + 4ysubject to $30x + 12y \le 6000$ $10x + 8y \le 2600$ $x \ge 0, y \ge 0$ (B) Multivariable Calculus Problee Maximize $M = x^2y - xy^3 - 2yz$ 10 Multivariable Calculus Problee Maximize $M = x^2y - xy^3 - 2yz$ $2 \le z \le 3$

(C) Maximize $f(x) = x^3 - 2x + \log(\sin x) - 7$ subject to $1 \le x \le 3$ (D) Maximize $f(x) = 1 - x^2$ subject to $-1 \le x \le 1$ (E) Maximize $f(x) = x^2$ subject to $x \le 0, x \ge 1$ (F) Maximize $f(x) = x^2$ subject to $0 \le x < 1$ (G) Maximize $f(x) = \sin x$ (H) Maximize f(x) = 1/x subject to 0 < x < 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

General Mathematical Programming Problem

Given A set $S \subset R^n$ called the **Constraint Set** and A real-valued function $f : S \to R^1$ called the **Objective Function**

Want

 $\sup_{\mathbf{x}\in S}f(\mathbf{x})$

where $M = \sup_{\mathbf{x} \in S} f(\mathbf{x})$ where "supremum of" is a number such that (a) $f(\mathbf{x}) \leq M$ for all \mathbf{x} in S and (b) for every $\epsilon > 0$ there is some \mathbf{x} in S such that $f(\mathbf{x}) > M - \epsilon$

Some Extreme Cases

If $S = \emptyset$, the problem is called **infeasible** Example: (E) Maximize $f(x) = x^2$ subject to $x \le 0, x \ge 1$

if $S = R^n$, the problem is called **unconstrained** Example: (G) Maximize $f(x) = \sin x$

If $\sup_{\mathbf{x} \in S} f(\mathbf{x}) = \infty$, the problem is **unbounded** Example: (H) Maximize f(x) = 1/x subject to 0 < x < 1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Optimal Feasible Solutions

If a vector \mathbf{x} belongs to the constraint set S, then \mathbf{x} is called a **feasible solution**

A vector **x** is said to maximize $f(\mathbf{x})$ if

$$f(\mathbf{x}) = \sup_{\mathbf{x} \in S} f(\mathbf{x})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

and **x** is called an **optimal solution**

If \mathbf{x} also belongs to S, then \mathbf{x} is called an **optimal feasible** solution

Basic Theorem of Analysis

If S is a closed and bounded nonempty set in \mathbb{R}^n and f is a continuous function, then there is an optimal feasible solution.

> *Note:* We see this theorem first in Calculus I, then see it again in Multivariable Calculus, and finally prove it in Real Analysis (MATH 323)

Why Don't We Talk About Minimizing Functions?

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Minimum of f(x) = - Maximum of -f(x)

Linear Functions

We shall begin with a focus on a particular type of objective function: Linear Functions which have the form

$$f(\mathbf{x}) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n = (c_1, c_2, \dots, c_n)^T \cdot (x_1, x_2, \dots, x_n) = \mathbf{c}^T \cdot \mathbf{x}$$

To specify f, we need only know **c** Fromage: 4.5x + 4y

$$\mathbf{c} = \left(\begin{array}{c} 4.5\\4 \end{array}
ight)$$

Cheese Buyers Problem: 6000c + 2600s + 2000b

$$\mathbf{c} = \left(\begin{array}{c} 6000\\ 2600\\ 2000 \end{array} \right)$$

Transportation Problem: $464x_{11} + 513x_{12} + ... + 685x_{34}$

$$\mathbf{c} = (464, 513, ..., 685)^T$$

Basic Properties of Linear Functions

С

$$f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x} = \mathbf{c}^{T} \mathbf{x}$$
$$= \begin{pmatrix} c_{1} \\ c_{2} \\ \dots \\ c_{n} \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_{1} \\ x_{2} \\ \dots \\ x_{n} \end{pmatrix}$$

 $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f\mathbf{y}$ $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$

so
$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$$

for any scalars α and β and any vectors \mathbf{x} and \mathbf{y}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proofs of Linear Function Properties

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f\mathbf{y})$$

Proof: $f(\mathbf{x} + \mathbf{y}) = \mathbf{c}^T (\mathbf{x} + \mathbf{y}) = \mathbf{c}^T \mathbf{x} + \mathbf{c}^T \mathbf{y} = \mathbf{f}(\mathbf{x}) + \mathbf{f} \mathbf{y}$
$$f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$$

Proof: $f(\alpha \mathbf{x}) = \mathbf{c}^T (\alpha \mathbf{x}) = \alpha \mathbf{c}^T \mathbf{x} = \alpha f(\mathbf{x})$
$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$$

Proof: $f(\alpha \mathbf{x} + \beta \mathbf{y}) = f(\alpha \mathbf{x}) + f(\beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$

Some Behavior of Linear Functions

If $\mathbf{c} = 0$, then $f(\mathbf{x}) = 0$ for all \mathbf{x}

Suppose, then, that $\mathbf{c} \neq \mathbf{0}$ and let $\mathbf{x} = \lambda \mathbf{c}$ where λ is a scalar.

Then $f(\mathbf{x}) = \mathbf{c}^T (\lambda \mathbf{c}) = \lambda(\mathbf{c}^T \mathbf{c}) = \lambda(c_1^2 + c_2^2 + \dots + c_n^2)$ which is a **positive multiple** of λ .

By choosing λ a sufficiently large positive number, we can make $f(\mathbf{x})$ as large as we please.

By choosing λ a sufficiently large negative number, we can make $f(\mathbf{x})$ as small as we please.

THUS: THE UNCONSTRAINED OPTIMIZATION PROBLEM FOR LINEAR OBJECTIVE FUNCTIONS IS UNBOUNDED

Linear Functions on Polygonal Sets

THE MAXIMUM VALUE **OF A LINEAR FUNCTION ON A POLYGONAL SET.** IF IT EXISTS, **ALWAYS OCCURS AT A** VERTEX