Dynamic Programming IV

Class 28

April 26, 2023

Handouts

Probability Distribution for Daily Demand Assignment 10 Team Project 2

Probabilistic

 DynamicProgramming I

Henry Brewster decides to market the Fancy Assortment through three local outlets: Shaw's, Hannaford, and the Middlebury Co-Op.

Each day he produces 6 cases (24 boxes each) at a cost to him of $\$ 100$ a case. Each case sold at an outlet yields $\$ 200$.

Any unsold assortments are returned to the factory where he can sell them at $\$ 50$ a case as stale products the next day.

Probability Distribution for Daily Demand

 (demand in cases)| | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| :--- | :--- | :---: | :---: | :---: |
| Store 1 | Shaw's | $\mathbf{. 6}$ | $\mathbf{0}$ | $\mathbf{. 4}$ |
| Store 2 | Hannaford's | $\mathbf{. 5}$ | $\mathbf{. 1}$ | $\mathbf{. 4}$ |
| Store 3 | Middlebury
 Co-Op | $\mathbf{. 4}$ | $\mathbf{. 3}$ | $\mathbf{. 3}$ |

Problem: How should he allocate the 6 cases to the three outlets to maximize his expected revenue?

Observations

- Don't give more than 3 cases to any store
- Distribute all 6

Expected Revenue Earned from Allocating x_{n} cases to store n (in hundreds of dollars)

x_{n}	Store 1 Shaw's	Store 2 Hannaford's	Store 3 Co-Op
$\mathbf{0}$	$\$ 0$	$\$ 0$	$\$ 0$
$\mathbf{1}$	$\$ 2$	$\$ 2$	$\$ 2$
$\mathbf{2}$	$\$ 3.10$	$\$ 3.25$	$\$ 3.40$
$\mathbf{3}$	$\$ 4.20$	$\$ 4.35$	$\$ 4.35$

$\frac{\text { Allocate } 2 \text { to Shaw's (Store 1) }}{.6(\text { Sell } 1, \text { Return } 1)+.4(\text { Sell } 2)}$
$.6(2+1 / 2)+.4(4)=1.5+1.6=3.1$

Allocate 3 to Shaw's
.6 (Sell 1, return 2) $+.4($ sell 3$)$

$$
.6(2+1)+.4(6)=1.8+2.4=4.2
$$

Allocate 2 to Hannaford's (Store 2)

$$
\begin{gathered}
.5(\text { Sell 1, return } 1)+.5(\text { sell } 2) \\
.5(2+1 / 2)+.5(4)=3.25
\end{gathered}
$$

Allocate 3 to Hannaford's
$.5($ sell 1 , return 2$)+.1($ sell 2 , return 1$)+.4($ sell3 $)$

$$
\begin{gathered}
.5(2+1)+.1(4+1 / 2)+.4(6) \\
1.5+.45+2.4=4.35
\end{gathered}
$$

$$
\begin{gathered}
\text { Allocate } 2 \text { to Co-Op } \\
.4(\text { sell } 1, \text { return } 1)+.6(\text { sell } 2) \\
.4(2+1 / 2)+.6(4)=1+2.4=3.4
\end{gathered}
$$

$$
\begin{gathered}
\frac{\text { Allocate } 3 \text { to Co-Op }}{} \\
.4(\text { sell } 1 \text {, return } 2)+.3(\text { sell } 2, \text { return } 1)+.3(\text { sell } 3) \\
.4(2+1)+.3(4+?)+.3(6)=1.2+1.35+1.8=4.35
\end{gathered}
$$

Expected Revenue Earned from Allocating x_{n} cases to store n (in hundreds of dollars)

x_{n}	Store 1 Shaw's	Store 2 Hannaford's	Store 3 Co-Op
$\mathbf{0}$	$\$ 0$	$\$ 0$	$\$ 0$
$\mathbf{1}$	$\$ 2$	$\$ 2$	$\$ 2$
$\mathbf{2}$	$\$ 3.10$	$\$ 3.25$	$\$ 3.40$
$\mathbf{3}$	$\$ 4.20$	$\$ 4.35$	$\$ 4.35$

Let $r_{i}(s)=$ expected revenue of giving s cases to store i. Then the recursive relationship is

$$
\begin{gathered}
f_{3}(s)=r_{3}(s) \\
f_{n}(s)=r_{n}(s)+f_{n+1}^{*}(x-s) \\
f_{n}^{*}(s)=\max _{k \leq s}\left[r_{n}(k)+f_{n+1}^{*}(s-k)\right]
\end{gathered}
$$

$f_{3}(s)=r_{3}(s)$

$n=3$	Co-Op					
\boldsymbol{x}	x_{3}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$f_{3}{ }^{*}$
$\mathbf{0}$				$x_{3}{ }^{*}$		
$\mathbf{1}$	0	-	-	-	0	$\mathbf{0}$
2	0	2	-	-	2	$\mathbf{1}$
3	0	2	3.4	-	3.4	$\mathbf{2}$

$f_{2}^{*}(s)=\max _{k \leq s}\left[r_{2}(k)+f_{3}^{*}(s-k)\right]$

$n=2$	Hannaford					
$\underset{S}{ }$	0	1	2	3	f_{2}	x_{2}
0	$0+0=0$	-	-	-	0	0
1	$0+2=2$	$2+0=2$	-	-	2	0 or 1
2	$0+3.4=3.4$	$2+2=4$	$3.25+0$	-	4	1
3	$0+4.35=4$.	$\begin{aligned} & 2+3.4= \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3.25+2= \\ 5.25 \\ \hline \end{array}$	$\begin{aligned} & 4.35+0 \\ & =4.35 \\ & \hline \end{aligned}$	5.40	1
4	-	$2+4.35=$	$\begin{aligned} & 3.25+ \\ & 3.4=6.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.35+2 \\ & =6.35 \\ & \hline \end{aligned}$	6.65	2
5	-	-	$\begin{array}{\|l\|} \hline 3.25+ \\ 4.35=7.60 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4.35+ \\ 3.4=7.75 \\ \hline \end{array}$	7.75	3
6	-	-	-	$\begin{aligned} & 4.35+4.35 \\ & =8.70 \end{aligned}$	8.70	3

$$
f_{1}^{*}(s)=\max _{k \leq s}\left[r_{1}(k)+f_{2}^{*}(s-k)\right]
$$

$n=1$	Shaw's					
x_{s}	0	1	2	3	f_{1}^{*}	$x_{1}{ }^{*}$
6	$\begin{aligned} & \hline 0+ \\ & 8.70 \\ & =8.70 \end{aligned}$	$\begin{aligned} & \hline 2+ \\ & 7.75 \\ & =9.75 \end{aligned}$	$\begin{aligned} & \hline 3.10 \\ & +6.65 \\ & =9.75 \end{aligned}$	$\begin{aligned} & \hline 4.2+ \\ & 5.40 \\ & =9.60 \\ & \hline \end{aligned}$	9.75	1 or 2

Solutions

Store	Number of Cases	Number of Cases
Shaw's	1	2
Hannaford	3	2
Co-Op	2	2

Expected Value of Revenue: \$975

Expected Value of Revenue: \$975

Best Possible Outcome
Sell all 6 cases $\rightarrow \$ 1200$

Worst Possible Outcome
Sell 1 at each store 3 sales, 3 returns
Revenue $=3 \cdot \$ 200+3 \cdot \$ 50=\$ 750$

Probabilistic Dynamic

Programming II Choose The Ideal Mate

Choosing The Ideal Mate

Choosing The Ideal Mate

N candidates each with values 0 - 1000, uniformly distributed. Uniform Distribution: For all a and b with $0 \leq a<b \leq 1000$, the probability that a value lies in the interval $[a, b]$ is proportional to the length of the interval. In this case, the probability would be

$$
\frac{b-a}{1000} .
$$

If we choose at random a number in an interval $[a, b]$, its expected value is the average of a and b.
Candidates are chosen at random and presented to you one at a time.
You either Accept or Reject and move on to the next candidate.
Our Question: How should you proceed if you wish to maximize the expected value of the candidate accepted?
[Different Question: What is the best policy if you wish to maximize the probability of picking the best candidate among the N ?]

After all our online chats, it's great to finally meet you in person.

Stages: candidates
x_{n} : decision variable" accept or reject.
s : value of current candidate
Stage N : Nth candidate has value uniformly distributed on $[0,1000]$ so the Expected Value is 500. Stage $N-1$: Consider $N-1$ st Candidate:

Accept if $s>500$; that is s is in the interval $[500,1000]$
Expected Value is $\frac{500+1000}{2}=750$.
Reject is $s \leq 500$ in which case the Expected Value is 500
Thus EV $=\frac{1}{2}(750)+\frac{1}{2}(500)=\frac{1}{2}(750+500)=625$

Stage $N-2$: Consider $N-2$ nd Candidate:
Accept if $s>625$; that is, s is in the interval [625,1000]
Expected Value is $\frac{625+1000}{2}=812.50$
Reject is $s \leq 625$ in which case the Expected Value is 625
Thus EV $=(.625)(625)+(1-.625)(812.50)=695.3$
Stage $N-3$: Consider $N-3$ rd Candidate:
Accept if $s>695.3$; that is, s is in the interval [695.3,1000] Expected Value is $\frac{695.3+1000}{2}=847.5$
Reject is $s \leq 695.3$ in which case the Expected Value is 695.3
Thus EV $=(.6953)(695.3)+(1-.6953)(847.50)=741.5$

Stage $N-3$: Consider $N-3$ rd Candidate:
Accept if $s>695.3$; that is, s is in the interval [695.3,1000] Expected Value is $\frac{695.3+1000}{2}=847.5$
Reject is $s \leq 695.3$ in which case the Expected Value is 695.3
Thus EV $=(.6953)(695.3)+(1-.6953)(847.50)=741.5$
General Case
Accept if $s>x$; that is, s is in the interval $[x, 1000]$ Expected Value is $\frac{x+1000}{2}$
Reject is $s \leq x$ in which case the Expected Value is x
Thus EV $=\frac{x}{1000} x+\left(1-\frac{x}{1000}\right)\left(\frac{x+1000}{2}\right)$
$\mathbf{E V}=\frac{x^{2}}{1000}+\left(\frac{1000-x}{1000}\right)\left(\frac{x+1000}{2}\right)$

$$
\begin{gathered}
\mathbf{E V}=\frac{x^{2}}{1000}+\left(\frac{1000-x}{1000}\right)\left(\frac{x+1000}{2}\right) \\
\mathbf{E V}=\frac{2 x^{2}}{2000}+\frac{1000^{2}-x^{2}}{2000}=\frac{x^{2}+1000^{2}}{2000} \\
\text { Improvement: } \frac{x^{2}+1000^{2}}{2000}-x= \\
\frac{x^{2}-2000 x+1000^{2}}{2000}=\frac{(x-1000)^{2}}{2000}
\end{gathered}
$$

$$
\text { Sequence: } x_{1}=500 ; x_{n}=\frac{x_{n}^{2}+10000^{2}}{2000}
$$

The sequence has a limit L which satisfies $L=\frac{L^{2}+1000^{2}}{2000}$
$L^{2}-2000 L+1000^{2}=0 \rightarrow(L-1000)^{2}=0 \rightarrow L=1000$

What is the Incremental Improvement in Looking at One More Candidate?

$$
\frac{(x-1000)^{2}}{2000}
$$

$$
\begin{aligned}
& x=500: \text { improvement is } \frac{(500-1000)^{2}}{2000}=\frac{250000}{2000}=125 \\
& x=850: \text { improvement is } \frac{(850-1000)^{2}}{2000}=\frac{22500}{2000}=11.25
\end{aligned}
$$

When is the Incremental Improvement less than 5?

$$
\begin{gathered}
\frac{(x-1000)^{2}}{2000}<5 \\
(x-1000)^{2}>5(2000)=10000=10^{4} \\
|x-1000|<10^{2} \\
|x-1000|<100
\end{gathered}
$$

AS SOON AS $x>900$

Next Time: Use Dynamic Programming To Solve
 Fromage Cheese Company Problem

