

Class 28

April 26, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Handouts

Probability Distribution for Daily Demand Assignment 10 Team Project 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Probabilistic Dynamic Programming I

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

イロト イヨト イヨト イヨト

æ

Henry Brewster decides to market the Fancy Assortment through three local outlets: Shaw's, Hannaford, and the Middlebury Co-Op.

Each day he produces 6 cases (24 boxes each) at a cost to him of \$100 a case. Each case sold at an outlet yields \$200.

Any unsold assortments are returned to the factory where he can sell them at \$50 a case as stale products the next day.

Probability Distribution for Daily Demand (demand in cases)

		1	2	3
Store 1	Shaw's	.6	0	.4
Store 2	Hannaford's	.5	.1	.4
Store 3	Middlebury	.4	.3	.3
	Co-Op			

Problem: How should he allocate the 6 cases to the three outlets to maximize his expected revenue? Observations

Don't give more than 3 cases to any store
Distribute all 6

Expected Revenue Earned from Allocating x_n cases to store n (in hundreds of dollars)

x_n	Store 1	Store 2	Store 3	
	Shaw's	Hannaford's	Co-Op	
0	\$0	\$0	\$0	
1	\$2	\$2	\$2	
2	\$3.10	\$3.25	\$3.40	
3	\$4.20	\$4.35	\$4.35	

 $\begin{array}{c} \mbox{Allocate 2 to Shaw's (Store 1)} \\ .6 \mbox{ (Sell 1, Return 1) + .4 (Sell 2)} \\ .6(\ 2 + 1/2 \) + .4(4) = 1.5 + 1.6 = 3.1 \end{array}$

 $\frac{\text{Allocate 3 to Shaw's}}{.6 \text{ (Sell 1, return 2)} + .4(\text{ sell 3)}}$.6(2 + 1) + .4(6) = 1.8 + 2.4 = 4.2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\frac{\text{Allocate 2 to Hannaford's (Store 2)}}{.5 \text{ (Sell 1, return 1)} + .5(\text{sell 2})} \\ .5(2 + 1/2) + .5(4) = 3.25}$

 $\begin{array}{r} & \underline{\mbox{Allocate 3 to Hannaford's}} \\ .5(sell 1, return 2) + .1(sell 2, return 1) + .4(sell3) \\ .5(2 + 1) + .1(4 + 1/2) + .4(6) \\ 1.5 + .45 + 2.4 = 4.35 \end{array}$

 $\begin{array}{r} \label{eq:allocate 2 to Co-Op} \\ .4(\text{sell 1, return 1}) + .6(\text{sell 2}) \\ .4(2+1/2) + .6(4) = 1 + 2.4 = 3.4 \end{array}$

 $\begin{array}{r} \mbox{Allocate 3 to Co-Op} \\ .4(sell 1, return 2) + .3(sell 2, return 1) + .3(sell 3) \\ .4(2+1) + .3(4+?) + .3(6) = 1.2 + 1.35 + 1.8 = 4.35 \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Expected Revenue Earned from Allocating x_n cases to store n (in hundreds of dollars)

x_n	Store 1	Store 2	Store 3	
	Shaw's	Hannaford's	Co-Op	
0	\$0	\$0	\$0	
1	\$2	\$2	\$2	
2	\$3.10	\$3.25	\$3.40	
3	\$4.20	\$4.35	\$4.35	

Let $r_i(s) =$ expected revenue of giving s cases to store i. Then the recursive relationship is

$$f_3(s) = r_3(s)$$

$$f_n(s) = r_n(s) + f_{n+1}^*(x-s)$$

$$f_n^*(s) = \max_{k \le s} [r_n(k) + f_{n+1}^*(s-k)]$$

$f_3(s) = r_3(s)$						
<i>n</i> = 3	Co-Op					
x_3	0	1	2	3	f_3^*	x_{3}^{*}
s						
0	0	_	<u> </u>	_	0	0
1	0	2	—	-	2	1
2	0	2	3.4		3.4	2
3	0	2	3.4	4.35	4.35	3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$f_2^*(s) = \max_{k \le s} [r_2(k) + f_3^*(s-k)]$$

<i>n</i> = 2	Hannaford					
x_2	0	1	2	3	f_2^*	x_2^*
s						
0	0 + 0 = 0	1	_	_	0	0
1	0 + 2 = 2	2 + 0 = 2	-	-	2	0 or 1
2	0+3.4=3.4	2+2 = 4	3.25 + 0		4	1
3	0+4.35=4.	2 +3.4=	3.25+2=	4.35 + 0	5.40	1
		5.4	5.25	= 4.35		
4	-	2 + 4.35=	3.25 +	4.35 + 2	6.65	2
			3.4=6.65	= 6.35		
5	Γ	L	3.25 +	4.35 +	7.75	3
			4.35=7.60	3.4 = 7.75		
6	-	-	_	4.35+4.35	8.70	3
				=8.70		

$$f_1^*(s) = \max_{k \le s} [r_1(k) + f_2^*(s-k)]$$

<i>n</i> = 1	Shaw's					
x_1	0	1	2	3	f_1^*	x_1^*
s						
6	0 +	2 +	3.10	4.2 +	9.75	1 or 2
	8.70	7.75	+6.65	5.40		
	= 8.70	= 9.75	= 9.75	= 9.60		

Solutions

Store	Number of Cases	Number of Cases
Shaw's	1	2
Hannaford	3	2
Co-Op	2	2

Expected Value of Revenue: \$975

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Expected Value of Revenue: \$975

Best Possible Outcome Sell all 6 cases ightarrow \$1200

Worst Possible Outcome Sell 1 at each store 3 sales, 3 returns Revenue = $3 \cdot $200 + 3 \cdot $50 = 750

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Probabilistic Dynamic Programming II Choose The Ideal Mate

Choosing The Ideal Mate

Choosing The Ideal Mate

N candidates each with values 0 - 1000, uniformly distributed. Uniform Distribution: For all *a* and *b* with $0 \le a < b \le 1000$, the probability that a value lies in the interval [a, b] is proportional to the length of the interval. In this case, the probability would be

$\frac{b-a}{1000}$.

If we choose at random a number in an interval [a, b], its expected value is the average of a and b.

Candidates are chosen at random and presented to you one at a time.

You either Accept or Reject and move on to the next candidate. Our Question: How should you proceed if you wish to maximize the expected value of the candidate accepted? [Different Question: What is the best policy if you wish to

maximize the probability of picking the best candidate among the N?

Stages : candidates

 x_n : decision variable" accept or reject.

s: value of current candidate

Stage *N*: *N*th candidate has value uniformly distributed on [0,1000] so the Expected Value is 500.

Stage N - 1: Consider N - 1st Candidate:

Accept if s > 500; that is s is in the interval [500,1000] Expected Value is $\frac{500+1000}{2} = 750$. Reject is $s \le 500$ in which case the Expected Value is 500 Thus **EV** = $\frac{1}{2}(750) + \frac{1}{2}(500) = \frac{1}{2}(750 + 500) = 625$

A D N A 目 N A E N A E N A B N A C N

Stage N - 2: Consider N - 2nd Candidate:

Accept if s > 625; that is, s is in the interval [625,1000] Expected Value is $\frac{625+1000}{2} = 812.50$ Reject is $s \le 625$ in which case the Expected Value is 625 Thus **EV** = (.625)(625) + (1 - .625)(812.50) = 695.3

Stage N - 3: Consider N - 3rd Candidate:

Accept if s > 695.3; that is, s is in the interval [695.3,1000] Expected Value is $\frac{695.3+1000}{2} = 847.5$ Reject is $s \le 695.3$ in which case the Expected Value is 695.3Thus **EV** = (.6953)(695.3) + (1 - .6953)(847.50) = 741.5

Stage N - 3: Consider N - 3rd Candidate:

Accept if s > 695.3; that is, s is in the interval [695.3,1000] Expected Value is $\frac{695.3+1000}{2} = 847.5$ Reject is $s \le 695.3$ in which case the Expected Value is 695.3Thus **EV** = (.6953)(695.3) + (1 - .6953)(847.50) = 741.5

General Case

Accept if
$$s > x$$
; that is, s is in the interval $[x, 1000]$
Expected Value is $\frac{x+1000}{2}$
Reject is $s \le x$ in which case the Expected Value is x
Thus $\mathbf{EV} = \frac{x}{1000}x + (1 - \frac{x}{1000})(\frac{x+1000}{2})$
 $\mathbf{EV} = \frac{x^2}{1000} + (\frac{1000-x}{1000})(\frac{x+1000}{2})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Sequence:
$$x_1 = 500; x_n = \frac{x_n^2 + 1000^2}{2000}$$

500
625
695
742
77
800
820
836
850
861

The sequence has a limit *L* which satisfies $L = \frac{L^2 + 1000^2}{2000}$ $L^2 - 2000L + 1000^2 = 0 \rightarrow (L - 1000)^2 = 0 \rightarrow L = 1000$

What is the Incremental Improvement in Looking at One More Candidate?

$$\frac{(x-1000)^2}{2000}$$

$$x = 500$$
: improvement is $\frac{(500-1000)^2}{2000} = \frac{250000}{2000} = 125$
 $x = 850$: improvement is $\frac{(850-1000)^2}{2000} = \frac{22500}{2000} = 11.25$

When is the Incremental Improvement less than 5?

$$\frac{(x-1000)^2}{2000} < 5$$
$$(x-1000)^2 > 5(2000) = 10000 = 10^4$$
$$|x-1000| < 10^2$$
$$|x-1000| < 100$$
AS SOON AS x > 900

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Next Time: Use Dynamic Programming To Solve Fromage Cheese Company Problem