
Dynamic Programming III

Class 27

April 24, 2023

Here
7 PM – ?

Dynamic Programming
Dynamic programming is a useful technique that we
can use to solve many optimization problems by
breaking up large problems into a sequence of
smaller, more tractable problems and then working
backward from the end of the problem toward the
beginning of the problem.

Characteristics
of

Dynamic
Programming

Problems

Characteristics of Dynamic Programming Problems II
Problem can be divided into stages with a policy decision required

at each stage.
I Each stage has a number of states associated with the

beginning of the stage.
I The effect of the policy decision at each stage is to transform

the current state to a state associated with the beginning of
the next stage.

I The solution procedure finds an optimal policy for the overall
problem.

I The Principle of Optimality: An optimal policy for the
remaining stages is independent of the policy decisions
adopted at previous stages.

I Solution procedure begins by finding optimal policy for the
last stage.

I A recursive relationship that identifies the optimal policy for
stage n given the optimal policy for n+1 is known.

f ∗n (s) = min[Csxn + f ∗n+1(xn)]

N = number of stages
n = label for current stage (n = 1, 2, ...,N)
sn = current state for stage n
xn = decision variable for stage n
x∗n = optimal value for xn given sn
fn(sn, xn) = contribution of stages n, n + 1, ...,N to objective
function if the system starts in state sn at stage n, we make
decision xn and we make optimal decisions at all future stages.

I A recursive relationship that identifies the optimal policy for
stage n given the optimal policy for n+1 is known.

f ∗n (s) = min[Csxn + f ∗n+1(xn)]

N = number of stages
n = label for current stage (n = 1, 2, ...,N)
sn = current state for stage n
xn = decision variable for stage n
x∗n = optimal value for xn given sn
fn(sn, xn) = contribution of stages n, n + 1, ...,N to objective
function if the system starts in state sn at stage n, we make
decision xn and we make optimal decisions at all future stages.

I Use the recursive relationship to work backward stage by
stage.
Construct a table at each stage:

Stages
With

Infinitely
Many

States

Continuous State Variables

Maximize
g(x , y) = 8x − 2x2 + 144y − 3y 3

subject to
x + y ≤ 7
x , y ≥ 0

Solution via Dynamic Programming

Stages: Stage 1 = Choose x , Stage 2 = Choose y

Let R = amount of slack left in constraint x + y ≤ 7

g(x , y) = 8x − 2x2 + 144y − 3y 3

Then f ∗2 (R) = max
0≤y≤R

(144y − 3y 3)

f ∗2 (R) = max
0≤y≤R

(144y − 3y3)

Now f2(R, y) = 144y − 3y3

so ∂f2
∂y = 144− 9y2

which equals 0 when y = 4.

Thus

y∗ =

{
R if 0 ≤ R ≤ 4
4 if 4 ≤ R ≤ 7

f ∗2 (R) = max
0≤y≤R

(144y − 3y3)

y∗ =

{
R if 0 ≤ R ≤ 4
4 if 4 ≤ R ≤ 7

Note f2(R, 4) = 144(4)− 3(43) = 576− 192 = 384

n = 2

R f ∗2 (R) y∗

0 ≤ R ≤ 4 144R − 3R3 R

4 ≤ R ≤ 7 384 4

f ∗1 (7) = max
0≤x≤7

(−2x2+8x+ f ∗2 (7−x))

For 0 ≤ x ≤ 3

f1(7, x) = −2x2 + 8x + 384

Here ∂f1(7,x)
∂x = −4x + 8 which is 0 at x = 2

with maximum value f1(7, 2) = −2(22) + 8(2) + 384 = 392

For 3 ≤ x ≤ 7

f1(7, x) = −2x2 + 8x + 144(7− x)− 3(7− x)3

Here ∂f1(7,x)
∂x = −4x + 8− 144 + 9(7− x)2

= −4x − 136 + 9(7− x)2

The second derivative is −4− 18(7− x) which is negative
so f1(7, x) will have a maximum value when its first derivative is 0.

9(7− x)2 = 4x + 136
9(49− 14x + x2)− 4x − 136 = 0
9x2 − 126x + 441− 4x − 136 = 0

9x2 − 130x + 305 = 0
Quadratic formula yields

x =
130±
√

(−130)2−36(305)
18

or x = 65±2
√
370

9

Roots are approximately 11.5 and 2.95, neither of which is in the
interval [3,7].

Thus the maximum occurs at an end point.

Recall
∂f1(7, x)

∂x
= −4x + 8− 144 + 9(7− x)2

So at x = 3 : −4(3)− 136 + 9× 42) = −12− 136 + 144 < 0
and at x = 7 : −4(7−136 + 9(02) = −28− 136 < 0

Thus f1(7, x) is decreasing at both endpoints.
The maximum occurs at x = 3.

Graph of f1(7, x)

f1(7, 3) = −2(32) + 8(3) + 144(4)− 3(43) = 390

Thus f ∗1 (7) = max(392, 390) = 392 so x∗1 = 2.

Finally, with x∗1 = 2,R = 7− 2 = 5 so y∗ = 4.

The maximum value of the objective function is

g(x , y) = g(2, 4) = 8(2)− 2(22) + 144(4)− 3(43) = 392.

Probabilistic
Dynamic

Programming I

Henry Brewster decides to market the Fancy
Assortment through three local outlets: Shaw’s,
Hannaford, and the Middlebury Co-Op.

Each day he produces 6 cases (24 boxes each) at a
cost to him of $100 a case. Each case sold at an
outlet yields $200.

Any unsold assortments are returned to the factory
where he can sell them at $50 a case as stale
products the next day.

Probability Distribution for Daily Demand
(demand in cases)

Problem: How should he allocate the 6
cases to the three outlets to maximize his

expected revenue?
Observations

I Don’t give more than 3 cases to any store

I Distribute all 6

Expected Revenue Earned from Allocating xn cases to store n
(in hundreds of dollars)

Allocate 2 to Shaw’s (Store 1)
.6 (Sell 1, Return 1) + .4 (Sell 2)

.6(2 + 1/2) + .4(4) = 1.5 + 1.6 = 3.1

Allocate 3 to Shaw’s
.6 (Sell 1, return 2) + .4(sell 3)

.6(2 + 1) + .4(6) = 1.8 + 2.4 = 4.2

Allocate 2 to Hannaford’s (Store 2)
.5 (Sell 1, return 1) + .5(sell 2)

.5(2 + 1/2) + .5(4) = 3.25

Allocate 3 to Hannaford’s
.5(sell 1, return 2) + .1(sell 2, return 1) + .4(sell3)

.5(2 + 1) + .1(4 + 1/2) + .4(6)
1.5 + .45 + 2.4 = 4.35

Allocate 2 to Co-Op
.4(sell 1, return 1) + .6(sell 2)

.4(2 + 1/2) + .6(4) = 1 + 2.4 = 3.4

Allocate 3 to Co-Op
.4(sell 1, return 2) + .3(sell 2, return 1) + .3(sell 3)

.4(2 + 1) + .3(4 + ?) +.3(6) = 1.2 + 1.35 + 1.8 = 4.35

Expected Revenue Earned from Allocating xn cases to store n
(in hundreds of dollars)

Let ri (s) = expected revenue of giving s cases to store i .
Then the recursive relationship is

f3(s) = r3(s)
fn(s) = rn(s) + f ∗n+1(x − s)

f ∗n (s) = max
k≤s

[rn(k) + f ∗n+1(s − k)]

f3(s) = r3(s)

f ∗2 (s) = max
k≤s

[r2(k) + f ∗3 (s − k)]

f ∗1 (s) = max
k≤s

[r1(k) + f ∗2 (s − k)]

Solutions

Store Number of Cases Number of Cases

Shaw’s 1 2

Hannaford 3 2

Co-Op 2 2

Expected Value of
Revenue: $975

Expected Value of Revenue: $975

Best Possible Outcome
Sell all 6 cases → $1200

Worst Possible Outcome
Sell 1 at each store

3 sales, 3 returns
Revenue = 3 · $200 + 3 · $50 = $750

Next Time:

Use Dynamic Programming To:
Choose The Ideal Mate

Solve Fromage Cheese
Company Problem

