Dynamic Programming III

Class 27

April 24, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Here 7 PM – ?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dynamic Programming

Dynamic programming is a useful technique that we can use to solve many optimization problems by breaking up large problems into a sequence of smaller, more tractable problems and then **working backward** from the end of the problem toward the beginning of the problem.

Characteristics of **Dynamic Programming Problems**

Characteristics of Dynamic Programming Problems II Problem can be divided into stages with a policy decision required at each stage.

- Each stage has a number of states associated with the beginning of the stage.
- The effect of the policy decision at each stage is to transform the current state to a state associated with the beginning of the next stage.
- The solution procedure finds an optimal policy for the overall problem.
- The Principle of Optimality: An optimal policy for the remaining stages is independent of the policy decisions adopted at previous stages.
- Solution procedure begins by finding optimal policy for the last stage.
- A recursive relationship that identifies the optimal policy for stage n given the optimal policy for n+1 is known.

$$f_n^*(s) = \min[C_{sx_n} + f_{n+1}^*(x_n)]$$

• • • • •

A recursive relationship that identifies the optimal policy for stage n given the optimal policy for n+1 is known.

$$f_n^*(s) = min[C_{sx_n} + f_{n+1}^*(x_n)]$$

N = number of stages

$$n =$$
label for current stage ($n = 1, 2, ..., N$)

$$s_n =$$
 current state for stage n

$$x_n =$$
 decision variable for stage n

$$x_n^* =$$
optimal value for x_n given s_n

 $f_n(s_n, x_n) =$ contribution of stages n, n + 1, ..., N to objective function if the system starts in state s_n at stage n, we make decision x_n and we make optimal decisions at all future stages.

NOC E REFRENCTION

 Use the recursive relationship to work backward stage by stage.

Construct a table at each stage:

$$\begin{array}{c|c} x_n & f_n(s_n, x_n) \\ \hline \\ s_n & f_n^*(s_n) & f_n^*(s_n) \\ \end{array}$$

Stages With Infinitely Many **States**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Continuous State Variables Maximize $g(x, y) = 8x - 2x^2 + 144y - 3y^3$ subject to x + y < 7x, y > 0

Solution via Dynamic Programming

Stages: Stage 1 = Choose x, Stage 2 = Choose y

Let R = amount of slack left in constraint $x + y \le 7$

$$g(x, y) = 8x - 2x^2 + 144y - 3y^3$$

Then
$$f_2^*(R) = \max_{0 \le y \le R} (144y - 3y^3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$y^* = \begin{cases} R & \text{if } 0 \le R \le 4\\ 4 & \text{if } 4 \le R \le 7 \end{cases}$$

$$f_2^*(R) = \max_{0 \le y \le R} (144y - 3y^3)$$

$$y^* = \begin{cases} R & \text{if } 0 \le R \le 4\\ 4 & \text{if } 4 \le R \le 7 \end{cases}$$

Note
$$f_2(R, 4) = 144(4) - 3(4^3) = 576 - 192 = 384$$

n = 2

R	$f_{2}^{*}(R)$	<i>y</i> *
$0 \le R \le 4$	$144R - 3R^3$	R
$4 \le R \le 7$	384	4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$f_1^*(7) = \max_{0 \le x \le 7} (-2x^2 + 8x + f_2^*(7 - x))$$
$$= \max \begin{cases} \max_{0 \le x \le 3} (-2x^2 + 8x + 384) \\ \max_{3 \le x \le 7} (-2x^2 + 8x + 144(7 - x) - 3(7 - x)^3) \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

For
$$0 \le x \le 3$$

$$\begin{array}{l} f_1(7,x) = -2x^2 + 8x + 384 \\ \text{Here } \frac{\partial f_1(7,x)}{\partial x} = -4x + 8 \text{ which is 0 at } x = 2 \\ \text{with maximum value } f_1(7,2) = -2(2^2) + 8(2) + 384 = 392 \end{array}$$

$$f_1(7,x) = -2x^2 + 8x + 144(7-x) - 3(7-x)^3$$

Here $\frac{\partial f_1(7,x)}{\partial x} = -4x + 8 - 144 + 9(7-x)^2$
 $= -4x - 136 + 9(7-x)^2$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The second derivative is -4 - 18(7 - x) which is negative so $f_1(7, x)$ will have a maximum value when its first derivative is 0.

$$9(7 - x)^{2} = 4x + 136$$

$$9(49 - 14x + x^{2}) - 4x - 136 = 0$$

$$9x^{2} - 126x + 441 - 4x - 136 = 0$$

$$9x^{2} - 130x + 305 = 0$$
Quadratic formula yields
$$x = \frac{130 \pm \sqrt{(-130)^{2} - 36(305)}}{18}$$
or $x = \frac{65 \pm 2\sqrt{370}}{9}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Roots are approximately 11.5 and 2.95, neither of which is in the interval [3,7]. Thus the maximum occurs at an end point.

Recall
$$\frac{\partial f_1(7,x)}{\partial x} = -4x + 8 - 144 + 9(7-x)^2$$

So at $x = 3: -4(3) - 136 + 9 \times 4^2) = -12 - 136 + 144 < 0$ and at $x = 7: -4(7_136 + 9(0^2) = -28 - 136 < 0$ Thus $f_1(7, x)$ is decreasing at both endpoints. The maximum occurs at x = 3.

 $f_1(7,3) = -2(3^2) + 8(3) + 144(4) - 3(4^3) = 390$ Thus $f_1^*(7) = \max(392, 390) = 392$ so $x_1^* = 2$. Finally, with $x_1^* = 2, R = 7 - 2 = 5$ so $y^* = 4$. The maximum value of the objective function is $g(x,y) = g(2,4) = 8(2) - 2(2^2) + 144(4) - 3(4^3) = 392$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Probabilistic Dynamic Programming I

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Henry Brewster decides to market the Fancy Assortment through three local outlets: Shaw's, Hannaford, and the Middlebury Co-Op.

Each day he produces 6 cases (24 boxes each) at a cost to him of \$100 a case. Each case sold at an outlet yields \$200.

Any unsold assortments are returned to the factory where he can sell them at \$50 a case as stale products the next day.

Probability Distribution for Daily Demand (demand in cases)

		1	2	3
Store 1	Shaw's	.6	0	.4
Store 2	Hannaford's	.5	.1	.4
Store 3	Middlebury	.4	.3	.3
	Co-Op			

Problem: How should he allocate the 6 cases to the three outlets to maximize his expected revenue? Observations

Don't give more than 3 cases to any store
Distribute all 6

Expected Revenue Earned from Allocating x_n cases to store n (in hundreds of dollars)

x_n	Store 1	Store 2	Store 3
	Shaw's	Hannaford's	Co-Op
0	\$0	\$0	\$0
1	\$2	\$2	\$2
2	\$3.10	\$3.25	\$3.40
3	\$4.20	\$4.35	\$4.35

 $\begin{array}{c} \mbox{Allocate 2 to Shaw's (Store 1)} \\ .6 \mbox{ (Sell 1, Return 1) + .4 (Sell 2)} \\ .6(\ 2 + 1/2 \) + .4(4) = 1.5 + 1.6 = 3.1 \end{array}$

 $\frac{\text{Allocate 3 to Shaw's}}{.6 \text{ (Sell 1, return 2)} + .4(\text{ sell 3)}}$.6(2 + 1) + .4(6) = 1.8 + 2.4 = 4.2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\frac{\text{Allocate 2 to Hannaford's (Store 2)}}{.5 \text{ (Sell 1, return 1)} + .5(\text{sell 2})} \\ .5(2 + 1/2) + .5(4) = 3.25}$

 $\begin{array}{r} & \underline{\mbox{Allocate 3 to Hannaford's}} \\ .5(sell 1, return 2) + .1(sell 2, return 1) + .4(sell3) \\ .5(2 + 1) + .1(4 + 1/2) + .4(6) \\ 1.5 + .45 + 2.4 = 4.35 \end{array}$

 $\begin{array}{r} \label{eq:allocate 2 to Co-Op} \\ .4(\text{sell 1, return 1}) + .6(\text{sell 2}) \\ .4(2+1/2) + .6(4) = 1 + 2.4 = 3.4 \end{array}$

 $\begin{array}{r} \mbox{Allocate 3 to Co-Op} \\ .4(sell 1, return 2) + .3(sell 2, return 1) + .3(sell 3) \\ .4(2+1) + .3(4+?) + .3(6) = 1.2 + 1.35 + 1.8 = 4.35 \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Expected Revenue Earned from Allocating x_n cases to store n (in hundreds of dollars)

x_n	Store 1	Store 2	Store 3
	Shaw's	Hannaford's	Co-Op
0	\$0	\$0	\$0
1	\$2	\$2	\$2
2	\$3.10	\$3.25	\$3.40
3	\$4.20	\$4.35	\$4.35

Let $r_i(s) =$ expected revenue of giving s cases to store i. Then the recursive relationship is

$$f_3(s) = r_3(s)$$

$$f_n(s) = r_n(s) + f_{n+1}^*(x-s)$$

$$f_n^*(s) = \max_{k \le s} [r_n(k) + f_{n+1}^*(s-k)]$$

$f_3(s) = r_3(s)$						
<i>n</i> = 3	Co-Op					
x_3	0	1	2	3	f_3^*	x_{3}^{*}
s						
0	0	_	<u> </u>	_	0	0
1	0	2	—	-	2	1
2	0	2	3.4		3.4	2
3	0	2	3.4	4.35	4.35	3

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへぐ

$$f_2^*(s) = \max_{k \le s} [r_2(k) + f_3^*(s-k)]$$

<i>n</i> = 2	Hannaford					
x_2	0	1	2	3	f_2^*	x_2^*
s						
0	0 + 0 = 0	1	_	_	0	0
1	0 + 2 = 2	2 + 0 = 2	-	-	2	0 or 1
2	0+3.4=3.4	2+2 = 4	3.25 + 0		4	1
3	0+4.35=4.	2 +3.4=	3.25+2=	4.35 + 0	5.40	1
		5.4	5.25	= 4.35		
4	-	2 + 4.35=	3.25 +	4.35 + 2	6.65	2
			3.4=6.65	= 6.35		
5	Γ	1	3.25 +	4.35 +	7.75	3
			4.35=7.60	3.4 = 7.75		
6	-	-	_	4.35+4.35	8.70	3
				=8.70		

$$f_1^*(s) = \max_{k \le s} [r_1(k) + f_2^*(s-k)]$$

<i>n</i> = 1	Shaw's					
x_1	0	1	2	3	f_1^*	x_1^*
s						
6	0 +	2 +	3.10	4.2 +	9.75	1 or 2
	8.70	7.75	+6.65	5.40		
	= 8.70	= 9.75	= 9.75	= 9.60		

Solutions

Store	Number of Cases	Number of Cases
Shaw's	1	2
Hannaford	3	2
Co-Op	2	2

Expected Value of Revenue: \$975

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Expected Value of Revenue: \$975

Best Possible Outcome Sell all 6 cases \rightarrow \$1200

Worst Possible Outcome Sell 1 at each store 3 sales, 3 returns Revenue = 3 · \$200 + 3 · \$50 = \$750

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Next Time:

Use Dynamic Programming To: Choose The Ideal Mate Solve Fromage Cheese Company Problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ