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Dynamic Programming
Dynamic programming is a useful technique that we
can use to solve many optimization problems by
breaking up large problems into a sequence of
smaller, more tractable problems and then working
backward from the end of the problem toward the
beginning of the problem.
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Characteristics of Dynamic Programming Problems II
Problem can be divided into stages with a policy decision required

at each stage.
I Each stage has a number of states associated with the

beginning of the stage.
I The effect of the policy decision at each stage is to transform

the current state to a state associated with the beginning of
the next stage.

I The solution procedure finds an optimal policy for the overall
problem.

I The Principle of Optimality: An optimal policy for the
remaining stages is independent of the policy decisions
adopted at previous stages.

I Solution procedure begins by finding optimal policy for the
last stage.

I A recursive relationship that identifies the optimal policy for
stage n given the optimal policy for n+1 is known.

f ∗n (s) = min[Csxn + f ∗n+1(xn)]

N = number of stages
n = label for current stage (n = 1, 2, ...,N)
sn = current state for stage n
xn = decision variable for stage n
x∗n = optimal value for xn given sn
fn(sn, xn) = contribution of stages n, n + 1, ...,N to objective
function if the system starts in state sn at stage n, we make
decision xn and we make optimal decisions at all future stages.



I A recursive relationship that identifies the optimal policy for
stage n given the optimal policy for n+1 is known.

f ∗n (s) = min[Csxn + f ∗n+1(xn)]

N = number of stages
n = label for current stage (n = 1, 2, ...,N)
sn = current state for stage n
xn = decision variable for stage n
x∗n = optimal value for xn given sn
fn(sn, xn) = contribution of stages n, n + 1, ...,N to objective
function if the system starts in state sn at stage n, we make
decision xn and we make optimal decisions at all future stages.

I Use the recursive relationship to work backward stage by
stage.
Construct a table at each stage:
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Continuous State Variables

Maximize
g(x , y) = 8x − 2x2 + 144y − 3y 3

subject to
x + y ≤ 7
x , y ≥ 0



Solution via Dynamic Programming

Stages: Stage 1 = Choose x , Stage 2 = Choose y

Let R = amount of slack left in constraint x + y ≤ 7

g(x , y) = 8x − 2x2 + 144y − 3y 3

Then f ∗2 (R) = max
0≤y≤R

(144y − 3y 3)



f ∗2 (R) = max
0≤y≤R

(144y − 3y3)

Now f2(R, y) = 144y − 3y3

so ∂f2
∂y = 144− 9y2

which equals 0 when y = 4.

Thus

y∗ =

{
R if 0 ≤ R ≤ 4
4 if 4 ≤ R ≤ 7



f ∗2 (R) = max
0≤y≤R

(144y − 3y3)

y∗ =

{
R if 0 ≤ R ≤ 4
4 if 4 ≤ R ≤ 7

Note f2(R, 4) = 144(4)− 3(43) = 576− 192 = 384

n = 2

R f ∗2 (R) y∗

0 ≤ R ≤ 4 144R − 3R3 R

4 ≤ R ≤ 7 384 4



f ∗1 (7) = max
0≤x≤7

(−2x2+8x+ f ∗2 (7−x))



For 0 ≤ x ≤ 3

f1(7, x) = −2x2 + 8x + 384

Here ∂f1(7,x)
∂x = −4x + 8 which is 0 at x = 2

with maximum value f1(7, 2) = −2(22) + 8(2) + 384 = 392

For 3 ≤ x ≤ 7

f1(7, x) = −2x2 + 8x + 144(7− x)− 3(7− x)3

Here ∂f1(7,x)
∂x = −4x + 8− 144 + 9(7− x)2

= −4x − 136 + 9(7− x)2



The second derivative is −4− 18(7− x) which is negative
so f1(7, x) will have a maximum value when its first derivative is 0.

9(7− x)2 = 4x + 136
9(49− 14x + x2)− 4x − 136 = 0
9x2 − 126x + 441− 4x − 136 = 0

9x2 − 130x + 305 = 0
Quadratic formula yields

x =
130±
√

(−130)2−36(305)
18

or x = 65±2
√
370

9



Roots are approximately 11.5 and 2.95, neither of which is in the
interval [ 3,7 ].

Thus the maximum occurs at an end point.

Recall
∂f1(7, x)

∂x
= −4x + 8− 144 + 9(7− x)2

So at x = 3 : −4(3)− 136 + 9× 42) = −12− 136 + 144 < 0
and at x = 7 : −4(7−136 + 9(02) = −28− 136 < 0

Thus f1(7, x) is decreasing at both endpoints.
The maximum occurs at x = 3.



Graph of f1(7, x)



f1(7, 3) = −2(32) + 8(3) + 144(4)− 3(43) = 390

Thus f ∗1 (7) = max(392, 390) = 392 so x∗1 = 2.

Finally, with x∗1 = 2,R = 7− 2 = 5 so y∗ = 4.

The maximum value of the objective function is

g(x , y) = g(2, 4) = 8(2)− 2(22) + 144(4)− 3(43) = 392.
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Henry Brewster decides to market the Fancy
Assortment through three local outlets: Shaw’s,
Hannaford, and the Middlebury Co-Op.

Each day he produces 6 cases (24 boxes each) at a
cost to him of $100 a case. Each case sold at an
outlet yields $200.

Any unsold assortments are returned to the factory
where he can sell them at $50 a case as stale
products the next day.



Probability Distribution for Daily Demand
(demand in cases)

Problem: How should he allocate the 6
cases to the three outlets to maximize his

expected revenue?
Observations

I Don’t give more than 3 cases to any store

I Distribute all 6



Expected Revenue Earned from Allocating xn cases to store n
(in hundreds of dollars)

Allocate 2 to Shaw’s (Store 1)
.6 (Sell 1, Return 1) + .4 (Sell 2)

.6( 2 + 1/2 ) + .4(4) = 1.5 + 1.6 = 3.1

Allocate 3 to Shaw’s
.6 (Sell 1, return 2) + .4( sell 3)

.6(2 + 1) + .4(6) = 1.8 + 2.4 = 4.2



Allocate 2 to Hannaford’s (Store 2)
.5 (Sell 1, return 1) + .5(sell 2)

.5(2 + 1/2) + .5(4) = 3.25

Allocate 3 to Hannaford’s
.5(sell 1, return 2) + .1(sell 2, return 1) + .4(sell3)

.5(2 + 1) + .1(4 + 1/2) + .4(6)
1.5 + .45 + 2.4 = 4.35

Allocate 2 to Co-Op
.4(sell 1, return 1) + .6(sell 2)

.4(2 + 1/2) + .6(4) = 1 + 2.4 = 3.4

Allocate 3 to Co-Op
.4(sell 1, return 2) + .3(sell 2, return 1) + .3(sell 3)

.4(2 + 1) + .3(4 + ?) +.3(6) = 1.2 + 1.35 + 1.8 = 4.35



Expected Revenue Earned from Allocating xn cases to store n
(in hundreds of dollars)

Let ri (s) = expected revenue of giving s cases to store i .
Then the recursive relationship is

f3(s) = r3(s)
fn(s) = rn(s) + f ∗n+1(x − s)

f ∗n (s) = max
k≤s

[rn(k) + f ∗n+1(s − k)]



f3(s) = r3(s)



f ∗2 (s) = max
k≤s

[r2(k) + f ∗3 (s − k)]



f ∗1 (s) = max
k≤s

[r1(k) + f ∗2 (s − k)]



Solutions

Store Number of Cases Number of Cases

Shaw’s 1 2

Hannaford 3 2

Co-Op 2 2

Expected Value of
Revenue: $975



Expected Value of Revenue: $975

Best Possible Outcome
Sell all 6 cases → $1200

Worst Possible Outcome
Sell 1 at each store

3 sales, 3 returns
Revenue = 3 · $200 + 3 · $50 = $750



Next Time:

Use Dynamic Programming To:
Choose The Ideal Mate

Solve Fromage Cheese
Company Problem




