Dynamic Programming III

Class 27

April 24, 2023

EXAMTODAY

Here
7 PM - ?

Dynamic Programming

Dynamic programming is a useful technique that we can use to solve many optimization problems by breaking up large problems into a sequence of smaller, more tractable problems and then working backward from the end of the problem toward the beginning of the problem.

Characteristics of

 Dynamic Programming ProblemsCharacteristics of Dynamic Programming Problems II
Problem can be divided into stages with a policy decision required at each stage.

- Each stage has a number of states associated with the beginning of the stage.
- The effect of the policy decision at each stage is to transform the current state to a state associated with the beginning of the next stage.
- The solution procedure finds an optimal policy for the overall problem.
- The Principle of Optimality: An optimal policy for the remaining stages is independent of the policy decisions adopted at previous stages.
- Solution procedure begins by finding optimal policy for the last stage.
- A recursive relationship that identifies the optimal policy for stage n given the optimal policy for $\mathrm{n}+1$ is known.

$$
f_{n}^{*}(s)=\min \left[C_{s x_{n}}+f_{n+1}^{*}\left(x_{n}\right)\right]
$$

- A recursive relationship that identifies the optimal policy for stage n given the optimal policy for $\mathrm{n}+1$ is known.

$$
f_{n}^{*}(s)=\min \left[C_{s x_{n}}+f_{n+1}^{*}\left(x_{n}\right)\right]
$$

$N=$ number of stages
$n=$ label for current stage $(n=1,2, \ldots, N)$
$s_{n}=$ current state for stage n
$x_{n}=$ decision variable for stage n
$x_{n}^{*}=$ optimal value for x_{n} given s_{n}
$f_{n}\left(s_{n}, x_{n}\right)=$ contribution of stages $n, n+1, \ldots, N$ to objective function if the system starts in state s_{n} at stage n, we make decision x_{n} and we make optimal decisions at all future stages.

- Use the recursive relationship to work backward stage by stage.
Construct a table at each stage:

Stages With Infinitely Many
 States

Continuous State Variables

$$
\begin{gathered}
\text { Maximize } \\
g(x, y)=8 x-2 x^{2}+144 y-3 y^{3} \\
\text { subject to } \\
x+y \leq 7 \\
x, y \geq 0
\end{gathered}
$$

Solution via Dynamic Programming

Stages: Stage $1=$ Choose x, Stage $2=$ Choose y
Let $R=$ amount of slack left in constraint $x+y \leq 7$

$$
g(x, y)=8 x-2 x^{2}+144 y-3 y^{3}
$$

Then $f_{2}^{*}(R)=\max _{0 \leq y \leq R}\left(144 y-3 y^{3}\right)$

$$
f_{2}^{*}(R)=\max _{0 \leq y \leq R}\left(144 y-3 y^{3}\right)
$$

Now $f_{2}(R, y)=144 y-3 y^{3}$

$$
\text { so } \frac{\partial f_{2}}{\partial y}=144-9 y^{2}
$$

which equals 0 when $y=4$.

Thus

$$
y^{*}=\left\{\begin{array}{cl}
R & \text { if } 0 \leq R \leq 4 \\
4 & \text { if } 4 \leq R \leq 7
\end{array}\right.
$$

$$
\begin{aligned}
& f_{2}^{*}(R)=\max _{0 \leq y \leq R}\left(144 y-3 y^{3}\right) \\
& y^{*}=\left\{\begin{array}{cc}
R & \text { if } 0 \leq R \leq 4 \\
4 & \text { if } 4 \leq R \leq 7
\end{array}\right.
\end{aligned}
$$

Note $f_{2}(R, 4)=144(4)-3\left(4^{3}\right)=576-192=384$

$$
\mathbf{n}=2
$$

R	$f_{2}^{*}(R)$	y^{*}
$0 \leq R \leq 4$	$144 R-3 R^{3}$	R
$4 \leq R \leq 7$	384	4

$f_{1}^{*}(7)=\max _{0 \leq x \leq 7}\left(-2 x^{2}+8 x+f_{2}^{*}(7-x)\right)$

$$
=\max \left\{\begin{array}{l}
\max _{0 \leq x \leq 3}\left(-2 x^{2}+8 x+384\right) \\
\max _{3 \leq x \leq 7}\left(-2 x^{2}+8 x+144(7-x)-3(7-x)^{3}\right)
\end{array}\right.
$$

For $0 \leq x \leq 3$

$$
f_{1}(7, x)=-2 x^{2}+8 x+384
$$

Here $\frac{\partial f_{1}(7, x)}{\partial x}=-4 x+8$ which is 0 at $x=2$
with maximum value $f_{1}(7,2)=-2\left(2^{2}\right)+8(2)+384=392$

For $3 \leq x \leq 7$

$$
\begin{gathered}
f_{1}(7, x)=-2 x^{2}+8 x+144(7-x)-3(7-x)^{3} \\
\text { Here } \frac{\partial f_{1}(7, x)}{\partial x}=-4 x+8-144+9(7-x)^{2} \\
=-4 x-136+9(7-x)^{2}
\end{gathered}
$$

The second derivative is $-4-18(7-x)$ which is negative so $f_{1}(7, x)$ will have a maximum value when its first derivative is 0 .

$$
\begin{gathered}
9(7-x)^{2}=4 x+136 \\
9\left(49-14 x+x^{2}\right)-4 x-136=0 \\
9 x^{2}-126 x+441-4 x-136=0 \\
9 x^{2}-130 x+305=0 \\
\text { Quadratic formula yields } \\
x=\frac{130 \pm \sqrt{(-130)^{2}-36(305)}}{18} \\
\text { or } x=\frac{65 \pm 2 \sqrt{370}}{9}
\end{gathered}
$$

Roots are approximately 11.5 and 2.95 , neither of which is in the interval [3,7].
Thus the maximum occurs at an end point.

$$
\text { Recall } \frac{\partial f_{1}(7, x)}{\partial x}=-4 x+8-144+9(7-x)^{2}
$$

So at $\left.x=3:-4(3)-136+9 \times 4^{2}\right)=-12-136+144<0$
and at $x=7:-4\left(7-136+9\left(0^{2}\right)=-28-136<0\right.$
Thus $f_{1}(7, x)$ is decreasing at both endpoints.
The maximum occurs at $x=3$.

Graph of $f_{1}(7, x)$

$$
f_{1}(7,3)=-2\left(3^{2}\right)+8(3)+144(4)-3\left(4^{3}\right)=390
$$

Thus $f_{1}^{*}(7)=\max (392,390)=392$ so $x_{1}^{*}=2$.
Finally, with $x_{1}^{*}=2, R=7-2=5$ so $y^{*}=4$.
The maximum value of the objective function is

$$
g(x, y)=g(2,4)=8(2)-2\left(2^{2}\right)+144(4)-3\left(4^{3}\right)=392 .
$$

Probabilistic

 DynamicProgramming I

Henry Brewster decides to market the Fancy Assortment through three local outlets: Shaw's, Hannaford, and the Middlebury Co-Op.

Each day he produces 6 cases (24 boxes each) at a cost to him of $\$ 100$ a case. Each case sold at an outlet yields $\$ 200$.

Any unsold assortments are returned to the factory where he can sell them at $\$ 50$ a case as stale products the next day.

Probability Distribution for Daily Demand

 (demand in cases)| | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| :--- | :--- | :---: | :---: | :---: |
| Store 1 | Shaw's | $\mathbf{. 6}$ | $\mathbf{0}$ | $\mathbf{. 4}$ |
| Store 2 | Hannaford's | $\mathbf{. 5}$ | $\mathbf{. 1}$ | $\mathbf{. 4}$ |
| Store 3 | Middlebury
 Co-Op | $\mathbf{. 4}$ | $\mathbf{. 3}$ | $\mathbf{. 3}$ |

Problem: How should he allocate the 6 cases to the three outlets to maximize his expected revenue?

Observations

- Don't give more than 3 cases to any store
- Distribute all 6

Expected Revenue Earned from Allocating x_{n} cases to store n (in hundreds of dollars)

x_{n}	Store 1 Shaw's	Store 2 Hannaford's	Store 3 Co-Op
$\mathbf{0}$	$\$ 0$	$\$ 0$	$\$ 0$
$\mathbf{1}$	$\$ 2$	$\$ 2$	$\$ 2$
$\mathbf{2}$	$\$ 3.10$	$\$ 3.25$	$\$ 3.40$
$\mathbf{3}$	$\$ 4.20$	$\$ 4.35$	$\$ 4.35$

$\frac{\text { Allocate } 2 \text { to Shaw's (Store 1) }}{.6(\text { Sell } 1, \text { Return } 1)+.4(\text { Sell } 2)}$
$.6(2+1 / 2)+.4(4)=1.5+1.6=3.1$

Allocate 3 to Shaw's
.6 (Sell 1, return 2) $+.4($ sell 3$)$

$$
.6(2+1)+.4(6)=1.8+2.4=4.2
$$

Allocate 2 to Hannaford's (Store 2)

$$
\begin{gathered}
.5(\text { Sell 1, return } 1)+.5(\text { sell } 2) \\
.5(2+1 / 2)+.5(4)=3.25
\end{gathered}
$$

Allocate 3 to Hannaford's
$.5($ sell 1 , return 2$)+.1($ sell 2 , return 1$)+.4($ sell3 $)$

$$
\begin{gathered}
.5(2+1)+.1(4+1 / 2)+.4(6) \\
1.5+.45+2.4=4.35
\end{gathered}
$$

$$
\begin{gathered}
\text { Allocate } 2 \text { to Co-Op } \\
.4(\text { sell } 1, \text { return } 1)+.6(\text { sell } 2) \\
.4(2+1 / 2)+.6(4)=1+2.4=3.4
\end{gathered}
$$

$$
\begin{gathered}
\frac{\text { Allocate } 3 \text { to Co-Op }}{} \\
.4(\text { sell } 1 \text {, return } 2)+.3(\text { sell } 2, \text { return } 1)+.3(\text { sell } 3) \\
.4(2+1)+.3(4+?)+.3(6)=1.2+1.35+1.8=4.35
\end{gathered}
$$

Expected Revenue Earned from Allocating x_{n} cases to store n (in hundreds of dollars)

x_{n}	Store 1 Shaw's	Store 2 Hannaford's	Store 3 Co-Op
$\mathbf{0}$	$\$ 0$	$\$ 0$	$\$ 0$
$\mathbf{1}$	$\$ 2$	$\$ 2$	$\$ 2$
$\mathbf{2}$	$\$ 3.10$	$\$ 3.25$	$\$ 3.40$
$\mathbf{3}$	$\$ 4.20$	$\$ 4.35$	$\$ 4.35$

Let $r_{i}(s)=$ expected revenue of giving s cases to store i. Then the recursive relationship is

$$
\begin{gathered}
f_{3}(s)=r_{3}(s) \\
f_{n}(s)=r_{n}(s)+f_{n+1}^{*}(x-s) \\
f_{n}^{*}(s)=\max _{k \leq s}\left[r_{n}(k)+f_{n+1}^{*}(s-k)\right]
\end{gathered}
$$

$f_{3}(s)=r_{3}(s)$

$n=3$	Co-Op					
\boldsymbol{x}	x_{3}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$f_{3}{ }^{*}$
$\mathbf{0}$				$x_{3}{ }^{*}$		
$\mathbf{1}$	0	-	-	-	0	$\mathbf{0}$
2	0	2	-	-	2	$\mathbf{1}$
3	0	2	3.4	-	3.4	$\mathbf{2}$

$f_{2}^{*}(s)=\max _{k \leq s}\left[r_{2}(k)+f_{3}^{*}(s-k)\right]$

$n=2$	Hannaford					
$\underset{S}{ }$	0	1	2	3	f_{2}	x_{2}
0	$0+0=0$	-	-	-	0	0
1	$0+2=2$	$2+0=2$	-	-	2	0 or 1
2	$0+3.4=3.4$	$2+2=4$	$3.25+0$	-	4	1
3	$0+4.35=4$.	$\begin{aligned} & 2+3.4= \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3.25+2= \\ 5.25 \\ \hline \end{array}$	$\begin{aligned} & 4.35+0 \\ & =4.35 \\ & \hline \end{aligned}$	5.40	1
4	-	$2+4.35=$	$\begin{aligned} & 3.25+ \\ & 3.4=6.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.35+2 \\ & =6.35 \\ & \hline \end{aligned}$	6.65	2
5	-	-	$\begin{array}{\|l\|} \hline 3.25+ \\ 4.35=7.60 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4.35+ \\ 3.4=7.75 \\ \hline \end{array}$	7.75	3
6	-	-	-	$\begin{aligned} & 4.35+4.35 \\ & =8.70 \end{aligned}$	8.70	3

$$
f_{1}^{*}(s)=\max _{k \leq s}\left[r_{1}(k)+f_{2}^{*}(s-k)\right]
$$

$n=1$	Shaw's					
x_{s}	0	1	2	3	f_{1}^{*}	$x_{1}{ }^{*}$
6	$\begin{aligned} & \hline 0+ \\ & 8.70 \\ & =8.70 \end{aligned}$	$\begin{aligned} & \hline 2+ \\ & 7.75 \\ & =9.75 \end{aligned}$	$\begin{aligned} & \hline 3.10 \\ & +6.65 \\ & =9.75 \end{aligned}$	$\begin{aligned} & \hline 4.2+ \\ & 5.40 \\ & =9.60 \\ & \hline \end{aligned}$	9.75	1 or 2

Solutions

Store	Number of Cases	Number of Cases
Shaw's	1	2
Hannaford	3	2
Co-Op	2	2

Expected Value of Revenue: \$975

Expected Value of Revenue: \$975

Best Possible Outcome
Sell all 6 cases $\rightarrow \$ 1200$

Worst Possible Outcome
Sell 1 at each store 3 sales, 3 returns
Revenue $=3 \cdot \$ 200+3 \cdot \$ 50=\$ 750$

Next Time:

Use Dynamic Programming To:

 Choose The Ideal Mate Solve Fromage Cheese Company Problem

