

Class 26
April 21, 2023

Dynamic Programming II

Handouts

Characteristics of Dynamic Programming

Announcements

TODAY

MATHEMATICS SEMINAR

Dynamic and adaptive information

 accumulation and exchange during foragingTo effectively forage in natural environments, organisms must learn and adapt to changes in the availability of resources. Patch exploitation is a canonical foraging behavior, and the way in which animals account for environmental change and uncertainty should be captured more accurately by mathematical models. We first address this issue in a model describing agents that statistically and sequentially infer patch resource quality using Bayesian updating, based on their resource encounter history. Uncertainty leads patchexploiting foragers to overharvest (underharvest) patches with initially low (high) resource yields. Social interactions that synchronize the times that foragers depart patches improve group foraging efficiency. We also address the problem of groups responding to rapid patch-quality changes. Using the example of honeybee swarms, we find social interactions that allow bees can directly switch the opinion of nestmates foraging at lower-yielding feeders can quickly increase the fraction of the swarm at the correct feeder. Our mathematical framework allows us to compare the effects of a suite of mechanisms by which bees social inhibit the expressed opinions of their neighbors.

Zachary P Kilpatrick, PhD
Associate Professor
University of Colorado Boulder
Department of Applied Mathematics
https://www.colorado.edu/amath/zpkilpat

Friday, April 21 from 12:15-1:15pm in WNS 100

Announcements

Exam 2: Monday Evening

7 PM - ?

Dynamic Programming

Dynamic programming is a useful technique that we can use to solve many optimization problems by breaking up large problems into a sequence of smaller, more tractable problems and then Working Backward from the end of the problem toward the beginning of the problem.

New York to Los Angeles Road Trip

| Columbus |
| :--- | :--- | | Kansas |
| :--- |
| City |

Denver

Los
Angeles

New
York

Nashville

New York	Columbus	Nashville	Louisville
Columbus: 550	Kansas City:	Kansas City	Kansas City:
Nashville:	Omaha:	Omaha:	Omaha:
900	790	760	700
Louisville:	Dallas:	Dallas:	Dallas:
770	1050	660	830

| Kansas
 City | Omaha | Dallas | Denver | San
 Antonio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Denver:
 610 | Denver:
 540 | Denver:
 790 | Los Angeles:
 1030 | Los Angeles:
 1390 |
| San
 Antonio:
 790 | San
 Antonio:
 940 | San
 Antonio:
 270 | | |

Components of Dynamic Programming

Characteristics of

 Dynamic Programming Problems1. Problem can be divided into stages with a policy decision required at each stage
(NY to LA trip: which city should I stop at tonight?)
We'll number the stages $n=1,2,3, .$.
2. Each stage has a number of states associated with the beginning of the stage.

STATES = possible conditions in which the system could be at that stage of the problem (use s to indicate states)
Stage 1: States = New York
Stage 2: States = Columbus, Nashville, Louisville
Stage 3: States $=$ Kansas City, Omaha, Dallas
Stage 4: States = Denver, San Antonio
Number of states can be finite or infinite
3. The effect of the policy decision at each stage is to transform the current state to a state associated with the beginning of the next stage.

Image: column of nodes at a stage.
Arcs going from these nodes to nodes at the next stage.
Value on an arc $=$ immediate contribution to the objective function from making that policy decision.
4. The solution procedure finds an optimal policy for the overall problem

What policy decision you should make at each stage for every possible state? x_{n}^{*} for each s
5. The Principle of Optimality: An optimal policy for the remaining stages is independent of the policy decisions adopted at previous stages.

Markovian property: it matters not how you got here, only where you are, to determine the next step.
Consequence: Suppose shortest route from NY to LA passes through Kansas City. Then the portion of that route from KC to LA is the shortest path from KC to LA.
6. Solution procedure begins by finding optimal policy for the last stage.
7. A recursive relationship that identifies the optimal policy for stage n given the optimal policy for $n+1$ is known.

$$
f_{n}^{*}(s)=\min _{x}\left[C_{s x_{n}}+f_{n+1}^{*}\left(x_{n}\right)\right.
$$

$N=$ number of stages
$n=$ label for current stage $(n=1,2, \ldots, N)$
$s_{n}=$ current state for stage n
$x_{n}=$ decision variable for stage n
$x_{n}^{*}=$ optimal value for x_{n} given s_{n}
$f_{n}\left(s_{n}, x_{n}\right)=$ contribution of stages $n, n+1, \ldots, N$ to objective function if the system starts in state s_{n} at stage n, we make decision x_{n} and we make optimal decisions at all future stages.
8. Use the recursive relationship to work backward stage by stage.
Construct a table at each stage:

Illustration

Stage 4

$n=4$	s	$f_{4}^{*}(s)$	x_{4}^{*}
	Denver	1030	Los Angeles
	San Antonio	1390	Los Angeles

Stage 3

$$
f_{3}\left(s, x_{3}\right)=C_{s x_{3}}+f_{4}^{*}\left(x_{3}\right)
$$

Kansas City
Omaha
Dallas

| Denver | San Antonio |
| :---: | :---: | | 1640 | 2180 |
| :---: | :---: |
| 1570 | 2330 |
| 1820 | 1660 |

$f_{3}^{*}(s)$	x_{3}^{*}
1640	Denver
1570	Denver
1660	San Antonio

Stage 2: $n=2$

	Kansas City	Omaha	Dallas	$f_{2}^{*}\left(x_{2}\right)$	x_{2}^{*}
Columbus	$680+1640$	$790+1570$	$1050+1660$		
Nashville	$580+1640$	$760+1570$	$660+1660$		
Louisville	$510+1640$	$700+1570$	$830+1660$		

$$
f_{2}\left(s, x_{2}\right)=C_{s x_{2}}+f_{3}^{*}\left(x_{2}\right)
$$

	Kansas City	Omaha	Dallas	$f_{2}^{*}\left(x_{2}\right)$	x_{2}^{*}
Columbus	2320	2360	2710	2320	Kansas City
Nashville	2220	2320	2320	2220	Kansas City
Louisville	2150	2270	2490	2150	Kansas City

Stage 1

$$
f_{1}\left(s, x_{1}\right)=C_{s x_{1}}+f_{1}^{*}\left(x_{1}\right)
$$

\boldsymbol{s}	Columbus	Nashville	Louisville	$f_{1}^{*}(\boldsymbol{s})$	x_{1}^{*}
New York	$550+2320$ $=2870$	$900+2220$	$770+2150$	2870	Columbus
	$=3120$	$=2920$			

Optimal Route
New York \rightarrow Columbus \rightarrow Kansas City \rightarrow Denver \rightarrow Los Angeles

Characteristics of Dynamic Programming Problems
Problem can be divided into stages with a policy decision required at each stage.

- Each stage has a number of states associated with the beginning of the stage.
- The effect of the policy decision at each stage is to transform the current state to a state associated with the beginning of the next stage.
- The solution procedure finds an optimal policy for the overall problem.
- The Principle of Optimality: An optimal policy for the remaining stages is independent of the policy decisions adopted at previous stages.
- Solution procedure begins by finding optimal policy for the last stage.
- A recursive relationship that identifies the optimal policy for stage n given the optimal policy for $\mathrm{n}+1$ is known.

$$
f_{n}^{*}(s)=\min \left[C_{s x_{n}}+f_{n+1}^{*}\left(x_{n}\right)\right]
$$

- A recursive relationship that identifies the optimal policy for stage n given the optimal policy for $\mathrm{n}+1$ is known.

$$
f_{n}^{*}(s)=\min \left[C_{s x_{n}}+f_{n+1}^{*}\left(x_{n}\right)\right.
$$

$N=$ number of stages
$n=$ label for current stage $(n=1,2, \ldots, N)$
$s_{n}=$ current state for stage n
$x_{n}=$ decision variable for stage n
$x_{n}^{*}=$ optimal value for x_{n} given s_{n}
$f_{n}\left(s_{n}, x_{n}\right)=$ contribution of stages $n, n+1, \ldots, N$ to objective function if the system starts in state s_{n} at stage n, we make decision x_{n} and we make optimal decisions at all future stages.

- Use the recursive relationship to work backward stage by stage.
Construct a table at each stage:

The Video Distribution Problem

Video Rentals

You own 3 Redbox kiosks located in three different stores and have 5 copies of the new Good Boys film. How should you distribute the videos among the stores?

Video Available	Store 1 Rentals	Store 2 Rentals	Store 3 Rentals
$\mathbf{0}$	0	0	0
$\mathbf{1}$	5	6	4
$\mathbf{2}$	9	11	9
$\mathbf{3}$	14	15	13
$\mathbf{4}$	17	19	18
$\mathbf{5}$	21	22	20

Stages $=$ Stores
States $=$ Number of Videos We Have

$$
n=3
$$

s	$f_{3}^{*}(s)$	x_{3}^{*}
0	0	0
1	4	1
2	9	2
3	13	3
4	18	4
5	20	5

$$
n=2: f_{2}\left(s, x_{2}\right)=C_{s x_{2}}+f_{3}^{*}\left(s-x_{2}\right)
$$

\boldsymbol{s}	\boldsymbol{x}_{2}	0	1	2	3	4	5	$f_{3}^{*}(\boldsymbol{S})$
$\mathbf{0}$	$0+0$	-	-	\boldsymbol{x}_{2}^{*}				
$\mathbf{1}$	$0+4$	$6+0$	-	-	-	-	0	0
$\mathbf{2}$	$0+9$	$6+4$	$11+0$	-	-	-	-	6
$\mathbf{3}$	$0+13$	$6+9$	$11+4$	$15+0$	--	-	1	
$\mathbf{4}$	$0+18$	$6+13$	$11+9$	$15+4$	$19+0$	-	15	$1_{2} 2_{2} 3$
$\mathbf{5}$	$0+20$	$6+18$	$11+13$	$15+9$	$19+4$	$22+0$	24	2

$f_{2}^{*}(s)=\max _{x_{2}}\left[C_{s x_{2}}+f_{3}^{*}\left(s-x_{2}\right)\right]$

$$
n=1: f_{1}\left(s, x_{1}\right)=C_{s x_{1}}+f_{2}^{*}\left(s-x_{1}\right)
$$

${\underset{s}{x}}^{x_{1}}$	0	1	2	3	4	5	$f_{1}^{*}(S)$	x_{1}^{*}
5	$0+24$	$5+20$	$9+15$	$14+11$	$17+6$	$21+0$	25	1 or 3

	Solution 1	Solution 2
Store 1	1	3
Store 2	2	2
Store 3	2	0
Rentals	$\mathbf{5 + 1 1 + 9}=\mathbf{2 5}$	$\mathbf{1 4 + 1 1 + 0 = 2 5}$

Why Redbox Has No Clerks

