

Class 26 April 21, 2023

◆□→ ◆□→ ◆注→ ◆注→ □注

Dynamic Programming II

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Handouts

Characteristics of Dynamic Programming

Announcements

TODAY

MATHEMATICS SEMINAR

Dynamic and adaptive information accumulation and exchange during foraging

To effectively forage in natural environments, organisms must learn and adapt to changes in the availability of resources. Patch exploitation is a canonical foraging behavior, and the way in which animals account for

environmental change and uncertainty should be captured more accurately by mathematical models. We first address this issue in a model describing agoints that statistically and sequentially infer patch resource quality using Bayesian updating, based on their resource encounter history. Uncertainty leads patchexploiting foragers to overharvest (underharvest)

patches with initially low (high) resource yields. Social interactions that synchronize the times that forgars despite patches improve group foraging efficiency. We also address the problem of groups responding to rapid social interactions that allow bees can directly switch the capiton of insetsed and the second interactions that allow bees can directly switch the capiton of insettions and the second interaction of the second and the second interaction of the second interactions that allow bees can directly switch the capiton of insettions and the second interaction of the second allows us to compare the effects of a suite of mechanisms by which bees social inhibit the expressed optimions of their neighbors.

Zachary P Kilpatrick, PhD Associate Professor University of Colorado Boulder Department of Applied Mathematics https://www.colorado.edu/amath/zpkilpat

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Friday, April 21 from 12:15 - 1:15pm in WNS 100

Announcements

Exam 2: Monday Evening

7 PM - ?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dynamic Programming

Dynamic programming is a useful technique that we can use to solve many optimization problems by breaking up large problems into a sequence of smaller, more tractable problems and then **Working Backward** from the end of the problem toward the beginning of the problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

New York to Los Angeles Road Trip

New York	Columbus	Nashville	Louisville
Columbus:	Kansas City:	Kansas City	Kansas City:
550	680	580	510
Nashville:	Omaha:	Omaha:	Omaha:
900	790	760	700
Louisville:	Dallas:	Dallas:	Dallas:
770	1050	660	830

Kansas	Omaha	Dallas	Denver	San
City				Antonio
Denver:	Denver:	Denver:	Los Angeles:	Los Angeles:
610	540	790	1030	1390
San	San	San		
Antonio:	Antonio:	Antonio:		
790	940	270		

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Characteristics of **Dynamic Programming Problems**

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1. Problem can be divided into stages with a policy decision required at each stage

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(NY to LA trip: which city should I stop at tonight?)

We'll number the stages n = 1, 2, 3, ...

2. Each stage has a number of states associated with the beginning of the stage.

STATES = possible conditions in which the system could be at that stage of the problem (use s to indicate states) Stage 1: States = New York Stage 2: States = Columbus, Nashville, Louisville Stage 3: States = Kansas City, Omaha, Dallas Stage 4: States = Denver, San Antonio

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Number of states can be finite or infinite

3. The effect of the policy decision at each stage is to transform the current state to a state associated with the beginning of the next stage.

Image: column of nodes at a stage. Arcs going from these nodes to nodes at the next stage. Value on an arc = immediate contribution to the objective function from making that policy decision.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

4. The solution procedure finds an optimal policy for the overall problem

What policy decision you should make at each stage for every possible state? x_n^* for each *s*

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

5. The Principle of Optimality: An optimal policy for the remaining stages is independent of the policy decisions adopted at previous stages.

Markovian property: it matters not how you got here, only where you are, to determine the next step. Consequence: Suppose shortest route from NY to LA passes through Kansas City. Then the portion of that route from KC to LA is the shortest path from KC to LA.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

6. Solution procedure begins by finding optimal policy for the last stage.

7. A recursive relationship that identifies the optimal policy for stage n given the optimal policy for n + 1 is known.

$$f_n^*(s) = min_x[C_{sx_n} + f_{n+1}^*(x_n)]$$

N = number of stages

$$n =$$
label for current stage ($n = 1, 2, ..., N$)

 $s_n =$ current state for stage n

$$x_n$$
 = decision variable for stage n

$$x_n^* =$$
optimal value for x_n given s_n

 $f_n(s_n, x_n) =$ contribution of stages n, n + 1, ..., N to objective function if the system starts in state s_n at stage n, we make decision x_n and we make optimal decisions at all future stages.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

8. Use the recursive relationship to work backward stage by stage.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Construct a table at each stage:

$$\begin{array}{c|c} x_n & f_n(s_n, x_n) \\ \hline s_n & f_n^*(s_n) & f_n^*(s_n) \\ \end{array} \\ \end{array} \\ \begin{array}{c|c} x_n^* \\ \hline \end{array} \\ \begin{array}{c|c} x_n^* \\ \hline \end{array} \\ \end{array}$$

Illustration

Stage 4

Stage 3

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

	$J_{3}(3, n_{3})$	$C_{sx_3} + J_4 (x_3)$		
x2	Denver	San Antonio	$f^*(x)$	*
8			$J_3(s)$	x_3
Kansas City	1640	2180	1640	Denver
Omaha	1570	2330	1570	Denver
Dallas	1820	1660	1660	San Antonio

 $f_3(s, x_3) = C_{sx_3} + f_4^*(x_3)$

Stage 2: *n* = 2

	Kansas City	Omaha	Dallas	$f_2^*(x_2)$	<i>x</i> ₂ *
Columbus	680 + 1640	790 + 1570	1050 + 1660		
Nashville	580 + 1640	760 + 1570	660 + 1660		
Louisville	510 + 1640	700 + 1570	830 + 1660		

$$f_2(s, x_2) = C_{sx_2} + f_3^*(x_2)$$

	Kansas City	Omaha	Dallas	$f_2^*(x_2)$	x ₂ *
Columbus	2320	2360	2710	2320	Kansas City
Nashville	2220	2320	2320	2220	Kansas City
Louisville	2150	2270	2490	2150	Kansas City

Stage 1

$$f_1(s, x_1) = C_{sx_1} + f_1^*(x_1)$$

s x _i	Columbus	Nashville	Louisville	$f_{1}^{*}(s)$	x_1^*
New York	550 + 2320	900 + 2220	770 +2150	2870	Columbus
	= 2870	= 3120	= 2920		

$\begin{array}{c} \mbox{Optimal Route} \\ \mbox{New York} \rightarrow \mbox{Columbus} \rightarrow \mbox{Kansas City} \rightarrow \mbox{Denver} \rightarrow \mbox{Los Angeles} \end{array}$

(日本)(四本)(日本)(日本)(日本)

Characteristics of Dynamic Programming Problems Problem can be divided into stages with a policy decision required at each stage.

- Each stage has a number of states associated with the beginning of the stage.
- The effect of the policy decision at each stage is to transform the current state to a state associated with the beginning of the next stage.
- The solution procedure finds an optimal policy for the overall problem.
- The Principle of Optimality: An optimal policy for the remaining stages is independent of the policy decisions adopted at previous stages.
- Solution procedure begins by finding optimal policy for the last stage.
- A recursive relationship that identifies the optimal policy for stage n given the optimal policy for n+1 is known.

$$f_n^*(s) = \min[C_{sx_n} + f_{n+1}^*(x_n)]$$

• • • •

A recursive relationship that identifies the optimal policy for stage n given the optimal policy for n+1 is known.

$$f_n^*(s) = min[C_{sx_n} + f_{n+1}^*(x_n)]$$

N = number of stages

$$n = label$$
 for current stage ($n = 1, 2, ..., N$)

$$s_n =$$
 current state for stage n

$$x_n =$$
 decision variable for stage n

$$x_n^* =$$
optimal value for x_n given s_n

 $f_n(s_n, x_n) =$ contribution of stages n, n + 1, ..., N to objective function if the system starts in state s_n at stage n, we make decision x_n and we make optimal decisions at all future stages.

NOC E REFRENCTION

 Use the recursive relationship to work backward stage by stage.

Construct a table at each stage:

$$\begin{array}{c|c} x_n & f_n(s_n, x_n) \\ \hline \\ s_n & f_n^*(s_n) & f_n^*(s_n) \\ \end{array}$$

The Video Distribution Problem

◆□▶ ◆舂▶ ◆恵▶ ◆恵▶ → 恵

Video Rentals

You own 3 Redbox kiosks located in three different stores and have 5 copies of the new *Good Boys* film. How should you distribute the videos among the stores?

Video	Store 1	Store 2	Store 3
Available	Rentals	Rentals	Rentals
0	0	0	0
1	5	6	4
2	9	11	9
3	14	15	13
4	17	19	18
5	21	22	20

 $\begin{aligned} \text{Stages} &= \text{Stores} \\ \text{States} &= \text{Number of Videos We Have} \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

<i>n</i> = 3					
S	$f_{3}^{*}(s)$	<i>x</i> ₃ *			
0	0	0			
1	4	1			
2	9	2			
3	13	3			
4	18	4			
5	20	5			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

 $n = 2: f_2(s, x_2) = C_{sx_2} + f_3^*(s - x_2)$

s 72	0	1	2	3	4	5	$f_3^*(s)$	x_2^*
0	0+0						0	0
1	0+4	6+0					6	1
2	0 + 9	6+4	11 + 0				11	2
3	0 + 13	6 + 9	11 + 4	15 + 0	_	_	15	1, 2, 3
4	0+18	6 + 13	11 + 9	15 + 4	19 + 0		20	2
5	0 + 20	6 + 18	11 +13	15 + 9	19 + 4	22 + 0	24	1,2,3

 $f_2^*(s) = \max_{x_2} [C_{sx_2} + f_3^*(s - x_2)]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $n = 1 : f_1(s, x_1) = C_{sx_1} + f_2^*(s - x_1)$

<i>x</i> 1 <i>s</i>	0	1	2	3	4	5	$f_1^*(s)$	x_1^*
5	0 + 24	5 + 20	9 + 15	14 + 11	17 + 6	21 + 0	25	1 or 3

	Solution 1	Solution 2
Store 1	1	3
Store 2	2	2
Store 3	2	0
Rentals	5+11+9=25	14+11+0=25

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Why Redbox Has No Clerks

