
Class 26
April 21, 2023



Dynamic Programming II



Handouts

Characteristics of Dynamic Programming



Announcements

TODAY



Announcements

Exam 2: Monday Evening

7 PM – ?



Dynamic Programming

Dynamic programming is a useful technique that we can use to
solve many optimization problems by breaking up large problems
into a sequence of smaller, more tractable problems and then
Working Backward from the end of the problem toward the
beginning of the problem.



New York to Los Angeles Road Trip



New York Columbus Nashville Louisville
Columbus: Kansas City: Kansas City Kansas City:

550 680 580 510

Nashville: Omaha: Omaha: Omaha:
900 790 760 700

Louisville: Dallas: Dallas: Dallas:
770 1050 660 830

Kansas Omaha Dallas Denver San
City Antonio

Denver: Denver: Denver: Los Angeles: Los Angeles:
610 540 790 1030 1390

San San San
Antonio: Antonio: Antonio:

790 940 270







Characteristics
of

Dynamic
Programming

Problems



1. Problem can be divided into stages with a policy decision
required at each stage

(NY to LA trip: which city should I stop at tonight?)

We’ll number the stages n = 1, 2, 3, ..



2. Each stage has a number of states associated with the
beginning of the stage.

STATES = possible conditions in which the system could be at
that stage of the problem (use s to indicate states)
Stage 1: States = New York
Stage 2: States = Columbus, Nashville, Louisville
Stage 3: States = Kansas City, Omaha, Dallas
Stage 4: States = Denver, San Antonio

Number of states can be finite or infinite



3. The effect of the policy decision at each stage is to
transform the current state to a state associated with the
beginning of the next stage.

Image: column of nodes at a stage.
Arcs going from these nodes to nodes at the next stage.
Value on an arc = immediate contribution to the objective
function from making that policy decision.



4. The solution procedure finds an optimal policy for the
overall problem

What policy decision you should make at each stage for every
possible state? x∗n for each s



5. The Principle of Optimality: An optimal policy for the
remaining stages is independent of the policy decisions
adopted at previous stages.

Markovian property: it matters not how you got here, only where
you are, to determine the next step.
Consequence: Suppose shortest route from NY to LA passes
through Kansas City. Then the portion of that route from KC to
LA is the shortest path from KC to LA.



6. Solution procedure begins by finding optimal policy for
the last stage.



7. A recursive relationship that identifies the optimal policy
for stage n given the optimal policy for n + 1 is known.

f ∗n (s) = minx [Csxn + f ∗n+1(xn)

N = number of stages
n = label for current stage (n = 1, 2, ...,N)
sn = current state for stage n
xn = decision variable for stage n
x∗n = optimal value for xn given sn
fn(sn, xn) = contribution of stages n, n + 1, ...,N to objective
function if the system starts in state sn at stage n, we make
decision xn and we make optimal decisions at all future stages.



8. Use the recursive relationship to work backward stage by
stage.
Construct a table at each stage:





Illustration

Stage 4

n = 4 s f ∗4 (s) x∗4
Denver 1030 Los Angeles

San Antonio 1390 Los Angeles

Stage 3





Stage 2: n = 2
Kansas City Omaha Dallas f ∗2 (x2) x∗2

Columbus 680 + 1640 790 + 1570 1050 + 1660

Nashville 580 + 1640 760 + 1570 660 + 1660

Louisville 510 + 1640 700 + 1570 830 + 1660





f2(s, x2) = Csx2 + f ∗3 (x2)

Kansas City Omaha Dallas f ∗2 (x2) x∗2
Columbus 2320 2360 2710 2320 Kansas City

Nashville 2220 2320 2320 2220 Kansas City

Louisville 2150 2270 2490 2150 Kansas City

Stage 1

f1(s, x1) = Csx1 + f ∗1 (x1)

� 

Columbus Nashville Louisville * * 

Ji (s) XI 
New York 550 + 2320 900 + 2220 770 +2150 2870 Columbus 

= 2870 = 3120 = 2920 



Optimal Route
New York → Columbus → Kansas City → Denver → Los Angeles



Characteristics of Dynamic Programming Problems
Problem can be divided into stages with a policy decision required

at each stage.
I Each stage has a number of states associated with the

beginning of the stage.
I The effect of the policy decision at each stage is to transform

the current state to a state associated with the beginning of
the next stage.

I The solution procedure finds an optimal policy for the overall
problem.

I The Principle of Optimality: An optimal policy for the
remaining stages is independent of the policy decisions
adopted at previous stages.

I Solution procedure begins by finding optimal policy for the
last stage.

I A recursive relationship that identifies the optimal policy for
stage n given the optimal policy for n+1 is known.

f ∗n (s) = min[Csxn + f ∗n+1(xn)]

N = number of stages
n = label for current stage (n = 1, 2, ...,N)
sn = current state for stage n
xn = decision variable for stage n
x∗n = optimal value for xn given sn
fn(sn, xn) = contribution of stages n, n + 1, ...,N to objective
function if the system starts in state sn at stage n, we make
decision xn and we make optimal decisions at all future stages.



I A recursive relationship that identifies the optimal policy for
stage n given the optimal policy for n+1 is known.

f ∗n (s) = min[Csxn + f ∗n+1(xn)

N = number of stages
n = label for current stage (n = 1, 2, ...,N)
sn = current state for stage n
xn = decision variable for stage n
x∗n = optimal value for xn given sn
fn(sn, xn) = contribution of stages n, n + 1, ...,N to objective
function if the system starts in state sn at stage n, we make
decision xn and we make optimal decisions at all future stages.

I Use the recursive relationship to work backward stage by
stage.
Construct a table at each stage:



The Video
Distribution

Problem





Video Rentals
You own 3 Redbox kiosks located in three different stores and have

5 copies of the new Good Boys film. How should you distribute
the videos among the stores?

Video Store 1 Store 2 Store 3
Available Rentals Rentals Rentals

0 0 0 0

1 5 6 4

2 9 11 9

3 14 15 13

4 17 19 18

5 21 22 20

Stages = Stores
States = Number of Videos We Have



n = 3

s f ∗3 (s) x∗3
0 0 0
1 4 1
2 9 2
3 13 3
4 18 4
5 20 5



n = 2 : f2(s, x2) = Csx2 + f ∗3 (s − x2)

f ∗2 (s) = max
x2

[Csx2 + f ∗3 (s − x2)]



n = 1 : f1(s, x1) = Csx1 + f ∗2 (s − x1)

Solution 1 Solution 2
Store 1 1 3
Store 2 2 2
Store 3 2 0

Rentals 5+11+9=25 14+11+0=25



Why Redbox Has No Clerks


