

000＇てI\＄	0\＄	000＇てI\＄	†
000＇てI\＄	000＇I\＄	000＇6\＄	ε
000＇てI\＄	000＇ $2 \$$	000＇乌\＄	$乙$
000＇てI\＄	000＇9\＄	000＇ャ\＄	I
000＇てI\＄	000＇$\angle \$$	000＇て\＄	0
$\begin{gathered} \text { 7soう } \\ \text { quәшəэe\|dəy } \end{gathered}$	1セә人 fo puヨ $7 \forall$ әЈ！ 1 uן－әре»」	150） әวиеиәұu！eW ןenuu＊	$\begin{gathered} (\text { sıeәर) } \\ \text { ieว u! } 28 \mathrm{~B} \end{gathered}$

＇sıеә人

Formulate as a Network Problem

Node $i=$ Beginning of year i.

For $i<j$, an arc (ij) corresponds to purchasing a car at the beginning of year i and keeping it until the beginning of year j.

Let $c_{i j}=$ cost of using arc $i j$.
Now $c_{i j}=$ cost of purchasing car at start of year $i+$ Maintenance cost incurred in years $i, i+1, i+2, \ldots, j-1-$ Trade-in at begining of year j.

Age in Car (years)	Annual Maintenance Cost	Trade-In Price At End of Year	Replacement Cost
0	$\$ 2,000$	$\$ 7,000$	$\$ 12,000$
1	$\$ 4,000$	$\$ 6,000$	$\$ 12,000$
2	$\$ 5,000$	$\$ 2,000$	$\$ 12,000$
3	$\$ 9,000$	$\$ 1,000$	$\$ 12,000$
4	$\$ 12,000$	$\$ 0$	$\$ 12,000$

Some Examples (measured in thousands of dollars)

$$
\begin{aligned}
& c_{12}=12+2-7=7 \\
& c_{13}=12+(2+4)-6=12 \\
& c_{14}=12+(2+4+5)-2=21 \\
& c_{15}=12+(2+4+5+9)-1=31 \\
& c_{16}=12+(2+4+5+9+12)-0=44
\end{aligned}
$$

Note that $c_{13}=c_{24}=c_{35}=c_{46}$ and, in general $c_{i j}=c_{i+k, j_{k}}$

