
Network Optimization
Models IV

Maximum Flow Problems

Class 24

April 17, 2023

Handouts

I Notes on Assignment 7

I Notes on Assignment 8

I Green Mountain Power

I Optimization in Machine
Learning and Data Science
link to full article

https://sinews.siam.org/Details-Page/optimization-in-machine-learning-and-data-science

Announcements

Announcements

Exam 2: Next Monday
Evening, April 24

Network Optimization
Problems

Minimal Spanning Tree
Shortest Path

Maximum Flow

Maximum Flow
Problem

Green Mountain Power (GMP) is a large electrical
power generating company.

Study of future requirements for electricity in the
region it serves:

Are existing facilities (transmission lines, relay
stations, etc.) adequate for transmitting the larger
quantities of electricity required to accommodate
increased future demands?

Suppose GMP has three generating stations, labeled 1 ,2 3 ,
with respective capacities of 15, 10, and 40 megawatts; there are 5
cities, labeled 4 , 5 , 6 , 7 , and 8 , which form nodes on a
graph.

There are transmission lines both between the generating stations
and some cities and between some pairs of cities.

Each transmission line has a known capacity cij .

Major Question: What is the maximum number of megawatts
that can be sent to each city from all three power stations?

We have a ”Multiple Source” Situation

It’s convenient to convert to a network with a single source and a
single sink
Add a new node, called a Super Source S and put a link from S
to each original source and make the capacity of that link the
number of megawatts that can be generated.

For this problem, we actually have 5 different maximum flow
problems, one to each city.

We’ll focus on node 8 as the destination.

Getting started:
Set all xij = 0.
Mark original capacities near start of each link
Let cji = 0 if there is no capacity in direction from j to i .

Original Capacities

S1 : 15 S2 : 10 S3: 40
14 : 15
25 : 10 27:40
37: 20 46 :15 58: 10
65: 20 67: 15
78: 45

Begin at the source and select any path to the destination which
has positive capacity c where capacity of a path = minimum of
capacities of links on that path.

Example: S
40−→ 3

20−→ 7
45−→ 8 has capacity c = 20.

Augment Flows
xS3 → xS3 + 20 = 0 + 20 = 20
x37 → x37 + 20 = 0 + 20 = 20
x78 → x78 + 20 = 0 + 20 = 20

Augment Flows And Update Capacities

xS3 → x53 + 20 = 0 + 20 = 20
x37 → x37 + 20 = 0 + 20 = 20
x78 → x78 + 20 = 0 + 20 = 20

Modify Capacities of Arcs
cij → cij − c for all arcs (i , j) on path
cji → cji + c for all arcs (i , j) on path

This yields a residual network with residual capacities on arcs.

Then select new path from S to 8 , called Augmenting Path and
continue as before.

Augmenting Paths for GMP Problem

Iteration 1: S → 3 → 7 → 8

Iteration 2: S → 2 → 5 → 8

Iteration 3: S → 1 → 4 → 6 → 7 → 8

Iteration 4: S → 3 → 6 → 5 → 2 → 7 → 8

Capacities

Iteration 1: 20
Iteration 2: 10
Iteration 3: 15
Iteration 4: 10

Final Flow Assignments

xS3 = 30 x14 = 15 x25 = 0 x36 = 10
xS2 = 10 x27 = 10 x37 = 20
xS1 = 30

x46 = 15 x58 = 10 x65 = 10 x78 = 45
x67 = 15

Maximum Flow is 55 megawatts

Schematic diagram of the railway network of the Western Soviet
Union and Eastern European countries, with a maximum flow of
value 163,000 tons from Russia to Eastern Europe, and a cut of

capacity 163,000 tons indicated as ”The bottleneck”.

T.E. Harris, F.S. Ross, Fundamentals of a Method for Evaluating
Rail Net Capacities, Research Memorandum RM-1573, The RAND

Corporation, Santa Monica, California, 1955.

The Maximum Flow Problem

1) All flow through a directed and connected network originates at
one node, called the source and terminates at one other node, called
the sink.

2) All the remaining nodes are transshipment nodes.

3) Flow through an arc is allowed only in the direction indicated by
the arrowhead, where the maximum amount of flow is given by the
capacity of that arc. At the source, all arcs point away from the
node. At the sink, all arcs point into the node.

4) The objective is to maximize the total amount of flow from the
source to the sink. This amount is measured in either of two equiv-
alent ways, namely, either the amount leaving the source or the
amount entering the sink.

The Ford-Fulkerson Algorithm

After some flows have been assigned to the arcs, the residual network
shows the remaining arc capacities (called residual capacities) for
assigning additional flows.

Change each directed arc to an undirected arc. The arc capacity in
the original direction remains the same and the arc capacity in the
opposite direction is zero, so the constraints on flows are unchanged.

Subsequently, whenever some amount of flow is assigned to an arc,
that amount is subtracted from the residual capacity in the same
direction and added to the residual capacity in the opposite direction.

An augmenting path is a directed path from the source to the sink
in the residual network such that every arc on this path has strictly
positive residual capacity. The minimum of these residual capacities
is called the residual capacity of the augmenting path because it
represents the amount of flow that can feasibly be added to the entire
path. Therefore, each augmenting path provides an opportunity to
further augment the now through the original network.

The augmenting path algorithm repeatedly selects some augmenting
path and adds a flow equal to its residual capacity to that path in
the original network. This process continues until there are no more
augmenting paths, so the flow from the source to the sink cannot
be increased further. The key to ensuring that the final solution
necessarily is optimal is the fact that augmenting paths can
cancel some previously assigned flows in the original network,
so an indiscriminate selection of paths for assigning flows cannot
prevent the use of a better combination of flow assignments.

The Augmenting Path Algorithm
for the Maximum Flow Problem

1) Identify an augmenting path by finding some directed path from
the source to the sink in the residual network such that every arc on
this path has strictly positive residual capacity. (If no augmenting
path exists, the net flows already assigned constitute an optimal flow
pattern.)

2) Identify the residual capacity c* of this augmenting path by find-
ing the minimum of the residual capacities of the arcs on this path.
Increase the flow in this path by c*.

3) Decrease by c* the residual capacity of each arc on this aug-
menting path. Increase by c* the residual capacity of each arc in
the opposite direction on this path. Return to step 1.

- adapted from Hillier and Lieberman

Finding An Augmented Path

1) Begin by determining all nodes that can reached from the
source with a single arc with positive residual capacity.

2) For each of these nodes, determine all new nodes that can be
reached with a single arc with positive residual capacity.

3) Repeat Step 2

This procedure yields a tree of all nodes that can be reached from
the source.

The Max-Flow Min-Cut
Theorem

A cut is a set of directed arcs containing at least one arc from
every directed path from the source to the sink.

The cut value of a cut in the sum of the arc capacities of the arcs
in the cut.

The Max-Flow Min-Cut Theorem: For any network
with a single source and single sink, the maximum
feasible flow from source to sink equals the
minimum cut value for all cuts of the network.

Delbert Ray Fulkerson Lester Randolph Ford, Jr.
Born: August 14, 1924 Born: September 23, 1927
Died: January 10, 1976 Died: February 26, 2017)

Biography Biography

https://ecommons.cornell.edu/bitstream/handle/1813/17887/Fulkerson_Delbert_Ray_1976.pdf?sequence=2
https://www.noozhawk.com/lester_r._ford_jr._of_santa_barbara_1927_2017/

Important Works by Ford and Fulkerson

”Maximal Flow Through a Network,” Canadian Journal of
Mathematics, 8:399 - 404, 1956.

”A Simple Algorithm for Finding Maximal Network Flows,”
Canadian Journal of Mathematics, 9: 210 - 218, 1957.

Flows in Networks, Princeton University Press, 1962.
New Edition in 2010 with a new foreword by Robert G. Bland and
James B. Orlin.

Complexity
By adding the flow augmenting path to the flow already
established in the graph, the maximum flow will be reached when
no more flow augmenting paths can be found.
There is no certainty that this situation will ever be reached. The
best that can be guaranteed is that the answer will be correct if
the algorithm terminates. If the algorithm runs forever, the flow
might not even converge towards the maximum flow.
However, this situation only occurs with irrational flow values.
When the capacities are integers, the runtime of Ford–Fulkerson is
bounded by O(Ef) where E is the number of edges in the graph
and f is the maximum flow in the graph.
This is because each augmenting path can be found in O(E) time
and increases the flow by an integer amount of at least 1 with the
upper bound f

A variation of the Ford – Fulkerson algorithm with guaranteed
termination and a runtime independent of the maximum flow value
is the Edmonds – Karp algorithm, which runs in O(VE 2)

Yefim Dinitz Jack Edmonds Richard Karp
Ben Gurion University Waterloo Berkeley

Dinic, E. A. (1970). ”Algorithm for solution of a problem of
maximum flow in a network with power estimation”. Soviet Math.
Doklady. 11: 1277 –1280.
Edmonds, Jack; Karp, Richard M. (1972). ”Theoretical
improvements in algorithmic efficiency for network flow problems”.
Journal of the ACM. Association for Computing Machinery. 19
(2): 248 – 264.

Shortest Path as LP Problem
The shortest-path problem is a minimum cost flow problem with a
unit supply at the origin and a unit demand at the Destination.
Label the Origin as node 1 and the Destination as node n.
Then Linear Programming problem is
Minimize

z =
n∑

i=1

n∑
j=1

cijxij

subject to
n∑

j=1

x1j −
n∑

j=1

xj1 = 1

n∑
j=1

xij −
n∑

j=1

xjn = 0, for 2 ≤ i ≤ n − 1

n∑
j=1

xnj −
n∑

j=1

xjn = −1

0 ≤ xij ≤ 1, for 1 ≤ i , j ≤ n

Next :
An Application to Baseball

An Application to Baseball

Baseball Elimination Via Max Flow

”See that thing in the paper last week about Einstein? ...
Some reporter asked him to figure out the mathematics

of the pennant race.
You know, one team wins so many of their remaining games,

the other teams win this number or that number.
What are the myriad possibilities?

Who’s got the edge?”
”The hell does he know?”

”Apparently not much.
He picked the Dodgers to eliminate the Giants last Friday.”

Don DeLillo, Underworld

Team Wins Games Against Against Against Against
To Atlanta Phily NY Miami

Play

Atlanta 83 8 - 1 6 1

Philadelphia 80 3 1 - 0 2

New York 78 6 6 0 - 0

Miami 77 3 1 2 0 -

Which teams have a chance of finishing the season with the
most wins?

Miami is eliminated: it can finish with at most 80 wins, but
Atlanta already has 83.
Sportswriters use The Magic Number.
Magic Number

http://www.obsoletecomputermuseum.org/magic/magicexpo.shtml

Another Example: Can Boston finish with at least as many wins as
every other team in the division?

Team Wins Games Against Against Against Against
To New Baltimore Toronto Boston

Play York

New York 92 2 - 1 1 0

Baltimore 91 3 1 - 1 1

Toronto 91 3 1 1 - 1

Boston 90 2 0 1 1 -

First Glance: Yes. Boston wins both its remaining games,
Baltimore and Toronto win exactly 1, and New York loses both its
games.

Team Wins Games Against Against Against Against
To New Baltimore Toronto Boston

Play York

New York 92 2 - 1 1 0

Baltimore 91 3 1 - 1 1

Toronto 91 3 1 1 - 1

Boston 90 2 0 1 1 -

Second Thought: No. If New York loses both of its games, then
Baltimore and Toronto each pick up a win; the winner of the
Baltimore -Toronto game finishes with 93 victories.

Team Wins Games Against Against Against Against
To New Baltimore Toronto Boston

Play York

New York 92 2 - 1 1 0

Baltimore 91 3 1 - 1 1

Toronto 91 3 1 1 - 1

Boston 90 2 0 1 1 -

A Different Analysis: Boston can win at most 92 games. The other
three teams have a cumulative total of 92 + 91 + 91 = 274 wins.
Their three games against each other will produce an additional 3
wins for a final total of 277 wins. One of the teams must end up
with more than 92 wins since the average number of wins is 277/3
> 92 .

I Is there an efficient algorithm to determine whether a given
team has been eliminated from first place?

I When a team has been eliminated, is there an averaging
argument that proves it?

A Mathematical Formulation

We have a set S of teams.

For each team x in S , let wx = its current number of wins.

For each pair of teams x , y , let gxy = the number of games they
will play against each other.

Let z represent the team in S whose fate we wish to examine.

if T is a subset of the set of teams, then |T | denotes the number
of teams in T .

Theorem Characterization Theorem for Baseball Elimination):
Suppose team z has been eliminated. Then there exists a proof of
this fact of the following form:
I z can finish with at most m wins.
I There is a subset T of S teams such that∑

x∈T
wx +

∑
x ,y∈T

gxy > m|T |

Another Example

Team Wins Games Against Against Against Against
To New Baltimore Toronto Boston

Play York

New York 90 7 - 1 6 -

Baltimore 88 2 1 - 1 -

Toronto 87 7 6 1 - -

Boston 79 12 - - - -

Claim: Boston has been eliminated.
Boston can finish with at most m = 79 + 12 = 91 wins.
Let T = {New York, Toronto}. Then∑

x∈T
wx +

∑
x ,y∈T

gxy = 90 + 87 + 6 = 183 > 91 · 2 = 182.

One of New York or Toronto will finish with at least 92 wins.

Team Wins Games Against Against Against Against
To New Baltimore Toronto Boston

Play York

New York 90 7 - 1 6 -

Baltimore 88 2 1 - 1 -

Toronto 87 7 6 1 - -

Boston 79 12 - - - -

Note: The set T = New York, Toronto, Baltimore doesn’t work:
Here ∑

x∈T
wx +

∑
x ,y∈T

gxy = 265 + 8 = 273

with average 273/3 = 91.

Designing and Analyzing the Algorithm

Suppose there’s a way for z to end up in first place
with m wins. We now want to allocate wins for all
remaining games so no other team finishes with
more than m wins.

We’ll allocate wins using a maximum flow
computation.
We have a source s from which all wins emanate.
The ith win can pass through one of the two teams
involved in the ith game.
We will then impose a capacity constraint: at most
m − wx wins can pass through team x .

Construct a flow network G .
Let S ′ = S − {z} (The set of other teams).
Let g∗ =

∑
x ,y∈S ′ gxy (total number of games left between all

pairs.
Nodes

I s a source and t a sink.

I a node v for each team in S ′.

I a node uxy for each pair of teams in S ′ with a nonzero
number of games left to play against each other.

Edges

I (s, uxy): wins emanate from s.

I (vx , t): wins are absorbed at t.

I (uxy , vx) and (uxy , vy): only x or y can win a game that they
play against each other.

Capacities:

I Capacity of (s, uxy) should be gxy .

I Capacity of (vx , t) should be m − wx (Ensure
that team x cannot win more than m − wx

games).

I Capacity of each (uxy , vx) will be infinite.

Team Wins Games Against Against Against Against
To New Baltimore Toronto Boston

Play York

New York 90 7 - 1 6 -

Baltimore 88 2 1 - 1 -

Toronto 87 7 6 1 - -

Boston 79 12 - - - -

Is Boston eliminated?
m = 91
S ′ = S − {z} = { New York, Baltimore, Toronto}
g∗ = 8 games left
Capacity of (vNewYork , t) = m − wNewYork = 91− 90 = 1
Capacity of (vBaltmore , t) = m − wBaltimore = 91− 88 = 3
Capacity of (vToronto , t) = m − wToronto = 91− 87 = 4

If there is a flow of value g∗, then it is possible for the outcomes of
all remaining games to yield a situation where no team has more
than m wins.

Hence if z wins all its remaining games, it can still achieve at least
a tie for first place.

Conversely, if there are outcomes for the remaining games in which
z does achieve at least a tie, we can use these outcomes to define
a flow of value g∗.

Boston has a chance if and only if the maximum flow in the
network is at least g* = 8 .

The maximum flow in this network is only 7
A Minimum cut is { s → Bal-Tor, s → NY-Bal, Toronto → t, New

York → t. }

We have shown: Team z has been eliminated if and only if the
maximum flow in G has value strictly less than g∗.

Characterizing When a Team is Eliminated

Theorem (Characterization Theorem for Baseball Elimination):
Suppose team z has been eliminated. Then there exists a proof of
this fact of the following form:

I z can finish with at most m wins.

I There is a subset T of S such that∑
x∈T

wx +
∑

x ,y∈T
gxy > m|T |

Proof of Theorem: I. Suppose z has been eliminated.
The maximum s − t flow in G has value g ′ < g∗

There is an s − t minimum cut (A,B) of capacity g ′

Let T be the set of teams x for which vx is in A.

Claim: We can use T in the ”averaging argument.”

First, consider the node uxy and suppose one of x or y is not in T ,
but uxy is in A. Then the edge (uxy , vx) would cross from A to B,
and hence the cut (A,B) would have infinite capacity.

But this contradicts the assumption that (A,B) is a minimum cut
of capacity less than g∗.

Thus, if x or y is not in T , then uxy is in B.

On the other hand, suppose x and y both belong to T , but uxy is
in B. Consider the cut (A′,B ′) obtained by adding uxy to the set A
and deleting it from the set B.

The capacity of (A′,B ′) is simply the capacity of (A,B) minus the
capacity gxy of the edge (s, uxy) for this edge (s, uxy) used to cross
from A to B, but now does not cross from A′ to B ′.

Since gxy > 0, the cut (A′,B ′) has smaller capacity than the cut
(A,B) , contradicting the minimality assumption on (A,B).

Thus, if x and y belong to T , then uxy is in A.

We have established: uxy is in A if and only if both x and y are in
T .

Now let’s determine the cut-value c(A,B). The edges crossing
from A to B have two possible forms:
I edges of the form (vx , t) where x is in T , and
I edges of the form (s, uxy) where at least one of x or y does

not belong to T . (ie, {x , y} is not a subset of T .)

Thus c(A,B) =
∑
x∈T

(m − wx) +
∑

x ,y∈T
gxy

= m|T | −
∑
x∈T

wx + (g∗ −
∑

x ,y∈T
gxy)

but we know that c(A,B) = g ′ < g∗ so

m|T | −
∑
x∈T

wx + (g∗ −
∑

x ,y∈T
gxy) < g∗

implying m|T | −
∑
x∈T

wx −
∑

x ,y∈T
gxy < 0

or ∑
x∈T

wx +
∑

x ,y∈T
gxy > m|T |

Adapted from Jon Kleinberg and Éva Tardos, Algorithm Design,
Boston: Pearson Addison-Wesley, 2006.

Éva Tardos Jon Kleinberg
October 1, 1957 October 16, 1971

Tardos Home Page Kleinberg Home Page

https://www.engineering.cornell.edu/faculty-directory/eva-tardos
https://www.cs.cornell.edu/home/kleinber/

Maximum Flow as LP Problem

Label the Source as node 1 and the Sink as node N.
Then the Linear Programming problem is

Maximize z =
N∑
j=2

x1j

subject to

N∑
j=2,j 6=i

xij −
N∑

j=2,j 6=i

xji = 0, for i = 2, 3, ...,N − 1

0 ≤ xij ≤ cij , where cij = 0 if (i , j) is not a branch

Next Week:
Dynamic Programming

