Network Optimization Models III

Kruskal's Algorithm
 Shortest Path Algorithm Applications of Shortest Paths

Class 22

April 10, 2023

Network Optimization Problems

Minimal Spanning Tree
Shortest Path
Maximum Flow

Kruskal's Algorithm (Minimum Spanning Tree)

Graph:

- Connected
- Weighted
- Undirected

Minimum Spanning Tree:

- Minimum possible total edge weight
- All the vertices connected

No cycles
Edges are a sub set of the graph edges
Number of Vertices $=9$

> Stop when number of $=(\#$ of vertices -1$)$ edges of the spanning tree

Kruskal's Algorithm

Kruskal's algorithm is an algorithm in graph theory that finds a minimum spanning tree for a connected weighted graph. Kruskal's algorithm is an example of a greedy algorithm.
Kruskal's Algorithm in One Sentence: At each stage, add the cheapest edge that connects two nodes not already connected
More formally,

- Create a forest F (a set of trees), where each vertex in the graph is a separate tree
- Create a set S containing all the edges in the graph
- while S is nonempty:
- Remove an edge with minimum weight from S
- If that edge connects two different trees, then add it to the forest, combining two trees into a single tree
- Otherwise discard that edge

Cost	Arcs
20	Old Chapel-McCullough
21	Old Chapel-Munroe
22	Admissions-McCullough, Warner-Munroe, Field House-Proctor
23	Admissions-Field House, Warner-McCullogh
24	Old Chapel-Field House, McCullough-Proctor
26	Munroe-Proctor
30	Library-Warner
34	Library-Admissions
35	Llbrary-Old Chapel

Field House

\longrightarrow

Munroe

Shortest Path Problem

$\mathrm{m}^{\text {@ }}$ mapquest

Edsger Wybe Dijkstra
May 11, 1930, Rotterdam, Netherlands
August 6, 2002, Nuenen, Netherlands

Dijsktra's Algorithm
 For The Shortest-Path Problem (1959)

We have a connected network with two special nodes designated the Origin and the Destination and a non-negative distance assigned to each link

Objective of the nth iteration: Find the nth nearest node to the Origin. Repeat for $n=1,2,3, .$. until the nth nearest node is the Destination.

Input for the nth iteration: $n-1$ nearest nodes to the Origin solved for at the previous iterations, including their shortest path and distance from the Origin. These nodes, together with the Origin, will be called solved nodes; the others are unsolved nodes.

Candidates for the nth nearest node: Each solved node that is directly connected by a link to one or more unsolved nodes provides one candidate: the unsolved node with the shortest connecting link. (Ties provide additional candidates)

Calculation of the nth nearest node: For each solved node and its candidate, add the distance between them and the distance from the Origin to this solved node. The candidate with the smallest such total distance is the nth nearest node (ties provide additional solved nodes) and its shortest path is the one generating this distance.

n	Solved Nodes Directly Linked	Closest Linked Unsolved	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Link
1	O	C	42	C	42	OC
2	O	A	46	A	46	OA
3	C	F	$42+34=76$			
	C	B	47			
	A	E	$46+34=76$	B	47	OB
4	A	E	$46+34=80$			
	B	E	$47+32=79$	F	76	CF
	C	F	$42+34=76$			
5	A	E	$46+34=80$			CE
	B	E	$47+32=79$	E	77	CE
	C	E	$42+35=77$			
	F	T	$76+38=114$			

n	Solved Nodes Directly Linked	Closest Linked Unsolved	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Link
6	A	D	$46+35=81$			
	B	D	$47+36=83$		81	AD
	F	T	$76+38=114$	D	81	
	E	T	$77+36=113$			
7	D	T	$81+34=115$			
	E	T	$77+36=113$	T	113	ET
	F	T	$76+38=114$			

n	nth Nearest Node	Distance	Last Link
1	C	42	OC
2	A	46	OA
3	B	47	OB
4	F	76	CF
5	E	77	CE
6	D	81	AD
7	T	113	ET

Shortest Path From O to T: OC \rightarrow CE \rightarrow ET

Some Other Shortest Path Problems

Abigail's Most Reliable Route Problem

My daughter Abby often drives between Middlebury and Boston. There are several routes that she can take. Each link is patrolled by different police forces (who do not coordinate with each other). For each link there is an estimated probability of being stopped. The reliability of a route is the product of the the reliability of the links in the route. Abby wants to drive very fast, but maximize the probability of not being stopped by the police..

This network displays on each link the probability of not being stopped for speeding.

The reliability (that is, probability of not being stopped) along the route Middlebury \rightarrow Brandon \rightarrow Rutland \rightarrow WRJ \rightarrow Boston is
$(0.2)(0.8)(0.35)(0.5)=0.028$ while the reliability of the Middlebury \rightarrow Bennington \rightarrow Keene \rightarrow Boston route is $(0.9)(0.3)(0.25)=0.0675$

Abby wants to find a route with maximum reliability. Since the logarithm is an increasing function, if the reliability of Route 1 exceeds the reliability of Route 2 , the logarithms have the same relationship:

Let R1 = Reliability of Route 1 and R2 = Reliability of Route 2 Then $R 1>R 2$ if and only if $\log (R 1)>\log (R 2)$.
Furthermore, suppose some route has Reliability R and that route has k links.

$$
\begin{aligned}
& \text { Then } R=p_{1} \cdot p_{2} \cdot p_{3} \ldots \cdot p_{k} \\
& \text { and } \log (R)=\log \left(p_{1}\right)+\log \left(p_{2}\right)+\ldots+\log \left(p_{k}\right)
\end{aligned}
$$

Thus Abby's problem, find the route with Maximum R is equivalent to finding the route with Maximum $\log (R)$ which, in turn, is equivalent to finding the route with the Maximum sum of the logarithms of the probabilities along its links.

Our problem then is to Maximize a sum

$$
\begin{aligned}
& \text { Maximize } \log \left(p_{1}\right)+\log \left(p_{2}\right)+\ldots+\log \left(p_{k}\right) \\
& \text { which we know is equivalent to } \\
& \text { MINIMIZE }-\left(\log \left(p_{1}\right)+\log \left(p_{2}\right)+\ldots+\log \left(p_{k}\right)\right) \\
& \text { or MINIMIZE }-\log \left(p_{1}\right)-\log \left(p_{2}\right)+\ldots-\log \left(p_{k}\right)
\end{aligned}
$$

Now for any link, the probability p_{i} of not being stopped is a number between 0 and 1 . Hence $\log \left(p_{i}\right)<0$ so $-\log \left(p_{i}\right)>0$. Thus our original Maximization problem becomes Minimizing the sum of a collection of POSITIVE numbers.

An Example

Recall that the reliability of the route Middlebury \rightarrow Brandon \rightarrow Rutland \rightarrow WRJ \rightarrow Boston is $R=(0.2)(0.8)(0.35)(0.5)=0.028$
Then $\log (R)=\log (0.2)+\log (0.8)+\log (0.35)+\log (0.5)$ so $\log R=-1.61-0.22-1.05-0.69$ (rounding to 2 decimal places)
and $-\log R=1.61+0.22+1.05+0.69$.

Thus to solve Abby's problem, replace each probability along a link with the negative of its logarithm and solve the new shortest path problem.

An Equipment Replacement Problem

Middlebury College's LIS is developing a replacement policy for its computer servers for a four-year period. At the start of the first year, Middlebury will purchase a server. At the start of each subsequent year, it will decide to keep the server or to replace it. The server will be in service for at least one year but no more than 3 years. This table shows the replacement cost as a function of the period when it is purchased and the years kept in operation:

Start of Year	Years 1	in 2	Operation 3
1	4000	5400	9800
2	4300	6200	8700
3	4800	7100	
4	4900		

Problem: Determine the best decision that minimizes the total cost incurred over the 4 year period.

All Possible Decisions

Decision	Cost				Total Cost
By a server in years 1,2,3,4	4000	4300	4800	4900	18,000
By a server in years 1,2,3	4000	4300	7100	\times	15,400
By a server in years 1,2,4	4000	6200	\times	4900	15,100
By a server in years 1,3,4	5400	\times	4800	4900	15,100
By a server in years 1,2	4000	8700	\times	\times	12,700
By a server in years 1,3	5400	\times	7100	\times	12,500
By a server in years 1,4	9800	\times	\times	4900	14,700

Let's Formulate Problem as Shortest Path Problem

The best decision corresponds to the shortest path from node 1 to node 5 , which is $1 \rightarrow 3 \rightarrow 5$ with the cost of $5400+7100-$ 12,500: Purchase a new server in years 1 and 3 .

Minimal Spanning Tree Problem

There are n points in the plane whose mutual distances are given. The problem is to join them with a net in such a way that:

- Any two points are joined to each other either directly or by means of some other points and
- the total length of the net will be minimal.

Proof That Kruskal's Algorithm Works

Let P be a connected, weighted graph and let Y be the subgraph of P produced by the algorithm.

Y cannot have a cycle, since the last edge added to that cycle would have been within one subtree and not between two different trees.

Y cannot be disconnected, since the first encountered edge that joins two components of Y would have been added by the algorithm.

Thus, Y is a spanning tree of P .

Let Y_{1} be a minimum spanning tree for P which has the greatest number of edges in common with Y.
If $Y_{1}=Y$ then Y is a minimum spanning tree.
Otherwise, let \mathbf{e} be the first edge considered by the algorithm that is in Y but not in Y_{1}.

Let C_{1} and C_{2} be the components of F which \mathbf{e} lies between at the stage when \mathbf{e} is considered.

Since Y_{1} is a tree, $Y_{1}+\mathbf{e}$ has a cycle and there is some different edge \mathbf{f} of that cycle that also lies between C_{1} and C_{2}.

Then $Y_{2}=Y_{1}+\mathbf{e}-\mathbf{f}$ is also a spanning tree.
Since \mathbf{e} is considered by the algorithm before \mathbf{f}, the weight of \mathbf{e} is at most equal to the weight of \mathbf{f}, and since Y_{1} is a minimum spanning tree the weights of these two edges must in fact be equal.

Therefore, Y_{2} is a minimum spanning tree having more edges in common with Y than Y_{1} does, contradicting our assumption about Y_{1}. This proves that Y must be a minimum spanning tree.

