
Network Optimization
Models II

Kruskal’s Algorithm
Shortest Path Algorithm
Applications of Shortest

Paths

Class 21

April 5, 2023



Network Optimization
Problems

Minimal Spanning Tree
Shortest Path

Maximum Flow





Kruskal’s Algorithm

Kruskal’s algorithm is an algorithm in graph theory that finds a
minimum spanning tree for a connected weighted graph. Kruskal’s
algorithm is an example of a greedy algorithm.
Kruskal’s Algorithm in One Sentence: At each stage, add
the cheapest edge that connects two nodes not already
connected
More formally,

I Create a forest F (a set of trees), where each vertex in the
graph is a separate tree

I Create a set S containing all the edges in the graph
I while S is nonempty:

I Remove an edge with minimum weight from S
I If that edge connects two different trees, then add it to the

forest, combining two trees into a single tree
I Otherwise discard that edge





Cost Arcs

20 Old Chapel-McCullough
21 Old Chapel-Munroe
22 Admissions-McCullough, Warner-Munroe, Field House-Proctor
23 Admissions-Field House, Warner-McCullogh
24 Old Chapel-Field House, McCullough-Proctor
26 Munroe-Proctor
30 Library-Warner
34 Library-Admissions
35 LIbrary-Old Chapel



















Shortest Path Problem



Edsger Wybe Dijkstra
May 11, 1930, Rotterdam, Netherlands
August 6, 2002, Nuenen, Netherlands





Dijsktra’s Algorithm
For The Shortest-Path Problem

(1959)
We have a connected network with two special nodes designated
the Origin and the Destination and a non-negative distance
assigned to each link
.

Objective of the nth iteration: Find the nth nearest node to the
Origin. Repeat for n = 1,2,3,.. until the nth nearest node is the
Destination.

Input for the nth iteration: n − 1 nearest nodes to the Origin
solved for at the previous iterations, including their shortest path
and distance from the Origin. These nodes, together with the
Origin, will be called solved nodes; the others are unsolved
nodes.



Candidates for the nth nearest node: Each solved node that is
directly connected by a link to one or more unsolved nodes
provides one candidate: the unsolved node with the shortest
connecting link. (Ties provide additional candidates)

Calculation of the nth nearest node: For each solved node and
its candidate, add the distance between them and the distance
from the Origin to this solved node. The candidate with the
smallest such total distance is the nth nearest node (ties provide
additional solved nodes) and its shortest path is the one generating
this distance.





n Solved Closest Total nth Minimum Last
Nodes Linked Distance Nearest Distance Link

Directly Unsolved Involved Node
Linked

1 O C 42 C 42 OC

2 O A 46 A 46 OA
C F 42+34 = 76

3 O B 47
C F 42+34 = 76 B 47 OB
A E 46+34 = 80

4 A E 46+34 = 80
B E 47+32 = 79 F 76 CF
C F 42+34 = 76

5 A E 46+34 = 80
B E 47+ 32 = 79 E 77 CE
C E 42+35 = 77
F T 76+38 = 114



n Solved Closest Total nth Minimum Last
Nodes Linked Distance Nearest Distance Link

Directly Unsolved Involved Node
Linked

6 A D 46+35 = 81
B D 47+36 = 83
F T 76+38 = 114 D 81 AD
E T 77+36 = 113

7 D T 81+34 =115
E T 77+36 = 113 T 113 ET
F T 76+38 = 114



n nth Nearest Node Distance Last Link
1 C 42 OC
2 A 46 OA
3 B 47 OB
4 F 76 CF
5 E 77 CE
6 D 81 AD
7 T 113 ET

Shortest Path From O to T: OC → CE → ET



Some Other Shortest Path Problems



Abigail’s Most Reliable Route Problem

My daughter Abby often drives between Middlebury and Boston.
There are several routes that she can take. Each link is patrolled
by different police forces (who do not coordinate with each other).
For each link there is an estimated probability of being stopped.
The reliability of a route is the product of the the reliability of the
links in the route. Abby wants to drive very fast, but maximize the
probability of not being stopped by the police..



This network displays on each link the probability of not being
stopped for speeding.

The reliability (that is, probability of not being stopped ) along
the route Middlebury → Brandon → Rutland → WRJ → Boston is

(0.2)(0.8)(0.35)(0.5) = 0.028 while the reliability of the
Middlebury → Bennington → Keene → Boston route is

(0.9)(0.3)(0.25) = 0.0675



Abby wants to find a route with maximum reliability.
Since the logarithm is an increasing function, if the reliability of
Route 1 exceeds the reliability of Route 2, the logarithms have the
same relationship:

Let R1 = Reliability of Route 1 and R2 = Reliability of Route 2
Then R1 > R2 if and only if log(R1) > log(R2).

Furthermore, suppose some route has Reliability R and that route
has k links.

Then R = p1 · p2 · p3... · pk
and log(R) = log(p1) + log(p2) + ... + log(pk)

Thus Abby’s problem, find the route with Maximum R is
equivalent to finding the route with Maximum log(R) which, in

turn, is equivalent to finding the route with the Maximum sum of
the logarithms of the probabilities along its links.



Our problem then is to Maximize a sum

Maximize log(p1) + log(p2) + ... + log(pk)
which we know is equivalent to

MINIMIZE −(log(p1) + log(p2) + ... + log(pk))
or MINIMIZE − log(p1)− log(p2) + ...− log(pk)

Now for any link, the probability pi of not being stopped is a
number between 0 and 1. Hence log(pi ) < 0 so − log(pi ) > 0.
Thus our original Maximization problem becomes Minimizing the
sum of a collection of POSITIVE numbers.



An Example

Recall that the reliability of the route
Middlebury → Brandon → Rutland → WRJ → Boston is
R = (0.2)(0.8)(0.35)(0.5) = 0.028
Then log(R) = log(0.2) + log(0.8) + log(0.35) + log(0.5)
so logR = −1.61− 0.22− 1.05− 0.69 (rounding to 2 decimal
places)
and − logR = 1.61 + 0.22 + 1.05 + 0.69.

Thus to solve Abby’s problem,
replace each probability along a
link with the negative of its
logarithm and solve the new
shortest path problem.





An Equipment Replacement Problem

Middlebury College’s LIS is developing a replacement policy for its
computer servers for a four-year period. At the start of the first
year, Middlebury will purchase a server. At the start of each
subsequent year, it will decide to keep the server or to replace it.
The server will be in service for at least one year but no more than
3 years. This table shows the replacement cost as a function of the
period when it is purchased and the years kept in operation:

Years in Operation
Start of Year 1 2 3

1 4000 5400 9800
2 4300 6200 8700
3 4800 7100
4 4900

Problem: Determine the best decision that minimizes the total
cost incurred over the 4 year period.



All Possible Decisions

Decision Cost Total Cost

By a server in years 1,2,3,4 4000 4300 4800 4900 18,000
By a server in years 1,2,3 4000 4300 7100 x 15,400
By a server in years 1,2,4 4000 6200 x 4900 15,100
By a server in years 1,3,4 5400 x 4800 4900 15,100
By a server in years 1,2 4000 8700 x x 12,700
By a server in years 1,3 5400 x 7100 x 12,500
By a server in years 1,4 9800 x x 4900 14,700

Let’s Formulate Problem as Shortest Path Problem



The best decision corresponds to the shortest path from node 1 to
node 5, which is 1→ 3→ 5 with the cost of 5400 + 7100 -

12,500: Purchase a new server in years 1 and 3.



Minimal Spanning Tree Problem
There are n points in the plane whose mutual distances are given.

The problem is to join them with a net in such a way that:

I Any two points are joined to each other either directly or by
means of some other points and

I the total length of the net will be minimal.



Proof That Kruskal’s Algorithm Works

Let P be a connected, weighted graph and let Y be the subgraph
of P produced by the algorithm.

Y cannot have a cycle, since the last edge added to that cycle
would have been within one subtree and not between two different
trees.

Y cannot be disconnected, since the first encountered edge that
joins two components of Y would have been added by the
algorithm.

Thus, Y is a spanning tree of P.



Let Y1 be a minimum spanning tree for P which has the greatest
number of edges in common with Y.
If Y1=Y then Y is a minimum spanning tree.

Otherwise, let e be the first edge considered by the algorithm that
is in Y but not in Y1.

Let C1 and C2 be the components of F which e lies between at the
stage when e is considered.

Since Y1 is a tree, Y1+e has a cycle and there is some different
edge f of that cycle that also lies between C1 and C2.

Then Y2=Y1 + e - f is also a spanning tree.

Since e is considered by the algorithm before f, the weight of e is
at most equal to the weight of f, and since Y1 is a minimum
spanning tree the weights of these two edges must in fact be equal.

Therefore, Y2 is a minimum spanning tree having more edges in
common with Y than Y1 does, contradicting our assumption about
Y1. This proves that Y must be a minimum spanning tree.


