
Network Optimization
Models

Class 20

April 5, 2023

Network Optimization
Problems

Minimal Spanning Tree
Shortest Path

Maximum Flow

Basic Vocabulary

A Graph = Network consists of a set of vertices and a set of
edges connecting certain pairs of the vertices.

Vertex = Node = Point

Edge = Link = Arc

A path between two vertices is a finite sequence of distinct edges
that connects the vertices.

Two vertices are connected if there is a path between them.

A connected network is a network where every pair of vertices is
connected

Tree: Connected Graph With No Cycles

Spanning Tree: A Tree Containing All Vertices of a Graph

Minimal Spanning Tree Problem
There are n points in the plane whose mutual distances are given.
The problem is to join them with a network in such a way that:

I Any two points are joined to each other either directly or by
means of some other points and

I the total length of the network will be minimal.

Otakar Bo̊ruvka (1926) [Electrical Networks]

Prim’s Algorithm
Vojtech Jarnik (1930)
Robert Prim (1957)

Edsger Dijkstra (1959)

Otakar Bo̊ruvka
May 10, 1899 - July 22, 1995

Click Here for Biography

http://www-history.mcs.st-andrews.ac.uk/Biographies/Boruvka.html

To many people Bo̊ruvka is best known for his solution of the
Minimal Spanning Tree problem which he published in 1926 in two
papers On a certain minimal problem (Czech) and Contribution to
the solution of a problem of economical construction of electrical
networks (Czech):
There are n points in the plane whose mutual distances are
different. The problem is to join them with a network in such a
way that:

1. any two points are joined to each other either directly or by
means of some other points.

2. the total length of the network will be minimal.

Vojtech Jarnik Edsger Dijkstra
Dec. 22, 1897 - Sept 22 1970 May 11, 1930 - Aug 6, 2002

Click Here for Biography Click Here for Biography

http://www-history.mcs.st-andrews.ac.uk/Biographies/Jarnik.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Dijkstra.html

Robert C. Prim
Robert Clay Prim
(born 1921 in Sweetwater,
Texas) is an American
mathematician and computer
scientist. Prim received his
B.S. in Electrical Engineering
and Ph. D. in mathematics
from Princeton University..
During the climax of World
War II (1941-1944), Prim

worked as an engineer for General Electric. From 1944 until 1949,
he was hired by the United States Naval Ordnance Lab as an
engineer and later a mathematician. At Bell Laboratories, he
served as director of mathematics research. There, Prim developed
Prim’s algorithm. During his career at Bell Laboratories, Prim
along with coworker Joseph Kruskal developed two different
algorithms for finding a minimum spanning tree in a weighted
graph, a basic stumbling block in computer network design .

Prim’s Algorithm
Prim’s Algorithm in One Sentence: Select any vertex and
label it connected; then proceed to label as connected the
unconnected vertex that is closest to a connected vertex.

More formally:

I Create a tree containing a single vertex, chosen arbitrarily
from the graph

I Create a set containing all the edges in the graph

I Loop until every edge in the set connects two vertices in the
tree
I Remove from the set an edge with minimum weight that

connects a vertex in the tree with a vertex not in the tree
I Add that edge to the tree

1) This is our original tree. The numbers near the arcs indicate
their weight. None of the arcs is highlighted, and vertex D has
been arbitrarily chosen as a starting point.

2) The second chosen vertex is the vertex nearest to D: A is 5
away, B is 9, E is 15, and F is 6. Of these, 5 is the smallest, so we
highlight the vertex A and the arc DA.

3) The next vertex chosen is the vertex nearest to either D or A. B
is 9 away (from D), E is 15, and F is 6. 6 is the smallest, so we
highlight the vertex F and the arc DF.

4) The algorithm carries on as above. Vertex B, which is 7 away
from A, is highlighted. Here, the arc DB is highlighted in red,
because both vertex B and vertex D have been highlighted, so it
cannot be used.

5) In this case, we can choose between C, E, and G. C is 8 away
from B, E is 7 away from B, and G is 11 away from F. E is nearest,
so we highlight the vertex E and the arc EB. Two other arcs have
been highlighted in red, as both their joining vertices have been
used.

6) Here, the only vertices available are C and G. C is 5 away from
E, and G is 9 away from E. C is chosen, so it is highlighted along
with the arc EC. The arc BC is also highlighted in red.

7) Vertex G is the only remaining vertex. It is 11 away from F, and
9 away from E. E is nearer, so we highlight it and the arc EG. Now
all the vertices have been highlighted, the minimum spanning tree
is shown in green. In this case, it has weight 39.

Vertices were added in the order D, A, F, B, E, C, G

Vertices are added in the order D, A, F, B, E, C, G

Proof that Prim’s Algorithm Works

Here’s a quick proof.
Suppose we have a connected, weighted graph; that is, there is a
weight or cost W (a, b) assigned to each edge (a, b). Let E ∗ be a
subset of the edges in a Minimum Spanning Tree T . Let V ∗ be
the vertices incident with edges in E ∗.
If (x , y) is an edge of minimum weight such that x is in V ∗ and y
is not in V ∗, then we claim that adding the edge (x , y) to E ∗ gives
a subset of a minimum spanning tree.
Why? If the edge is in T , this is trivial.
Suppose (x , y) is not in T .
Then there must be a path in T from x to y since T is connected.
If (v ,w) is the first edge on this path with one vertex in V ∗, if we
delete it and replace it with (x , y) we get a spanning tree.
This tree must have smaller weight than T , since
W (v ,w) > W (x , y). Thus T could not have been the Minimum
Spanning Tree.

Here’s a bit longer proof: Let P be a connected, weighted graph
with W(e) indicating the weight (or cost) of edge e. At every
iteration of Prim’s algorithm, an edge must be found that connects
a vertex in a subgraph to a vertex outside the subgraph.
Since P is connected, there will always be a path to every vertex.
The output Y of Prim’s algorithm is a tree, because the edge and
vertex added to Y are connected to other vertices and edges of Y
and at no iteration is a circuit created since each edge added
connects two vertices in two disconnected sets.
Also, Y includes all vertices from P because Y is a tree with n
vertices, same as P. Therefore, Y is a spanning tree for P.

Let Y1 be any minimal spanning tree for P. If Y = Y1, then the
proof is complete. If not, there is an edge in Y that is not in Y1.

Let e be the first edge that was added when Y was constructed.
Let V be the set of vertices of Y - e. Then one endpoint of e is
in Y and another is not. Since Y1 is a spanning tree of P, there is
a path in Y1 joining the two endpoints. As one travels along the
path, one must encounter an edge f joining a vertex in V to one
that is not in V. Now, at the iteration when e was added to Y, f
could also have been added and it would be added instead of e if its
weight was less than e. Since f was not added, we conclude that

W (f) ≥ W (e).

Let Y2 be the tree obtained by removing f and adding e from Y1.
Then Y2 is a tree that has more common with Y than with Y1. If
Y2 equals Y, QED.

If not, we can find a tree, Y3, with one more edge in common with
Y than Y2 and so forth.
Continuing this way produces a tree that has more in common
with Y than with the preceding tree.
Since there are finite number of edges in Y, the sequence is finite,
so there will eventually be a tree, Yh, which is identical to Y.
This shows Y is a minimal spanning tree.

Mathematics Courses
FALL 2023

201 Statistics and Data Science MWF 9:45
211 Regression TuThF 8:40 Becky Tang
218 Statistical Learning MWF 1:10 Alex Lyford
223A Multivariable Calculus MWF 8:40 Mike Olinick
223B Multivariable Calculus MWF 9:45 Mike Olinick
226 Differential Equations MWF 1:10 Michaela Kubacki
302 Abstract Algebra MWF 11:15 David Dorman
310 Probability MWF 11:15
323 Real Analysis MWF 1:10 Steve Abbott
326 Partial Differential Equations MW 9:45 Michaela Kubacki
332 Topology (CW) MW 2:15 Mike Olinick
335 Differential Geometry MWF 1:10 Emily Proctor
412 Bayesian Statistics TuThF 11:15 Becky Tang
741 Number Theory Seminar TuTh 9:45 Pete Schumer
746 Linear Algebra Methods TuTh 11:15 John Schmitt

Kruskal’s Algorithm

Kruskal’s algorithm is an algorithm in graph theory that finds a
minimum spanning tree for a connected weighted graph. Kruskal’s
algorithm is an example of a greedy algorithm.
Kruskal’s Algorithm in One Sentence: At each stage, add
the cheapest edge that connects two nodes not already
connected
More formally,

I Create a forest F (a set of trees), where each vertex in the
graph is a separate tree

I Create a set S containing all the edges in the graph
I while S is nonempty:

I Remove an edge with minimum weight from S
I If that edge connects two different trees, then add it to the

forest, combining two trees into a single tree
I Otherwise discard that edge

Kruskal adds edges in the order, CE, AD, DF, AB, BE, EG

With the use of a suitable data structure, we can show that
Kruskal’s algorithm runs in O(m log n) time, where m is the

number of edges in the graph and n is the number of vertices.

(January 29, 1928 - September 19, 2010)

Joseph Bernard Kruskal (born in New York) was an American
mathematician, statistician, and psychometrician. He was a
student at the University of Chicago and at Princeton University,
where he completed his Ph.D. in 1954.
Kruskal worked on well-quasi-orderings and multidimensional
scaling. He was a Fellow of the American Statistical Association,
former president of the Psychometric Society, and former president
of the Classification Society of North America.

Kruskal also initiated and was first president of the Fair Housing
Council of South Orange and Maplewood in 1963, and actively
supported civil rights in several other organizations.

Joseph should not be confused with his two brothers Martin David
Kruskal (September 28, 1925 - December 26, 2006) , co-inventor
of solitons and of surreal numbers) and William Henry Kruskal
(October 10, 1919 - April 21, 2005) who developed the
Kruskal-Wallis one-way analysis of variance).

Martin Kruskal William Kruskal

Proof That Kruskal’s Algorithm Works

Let P be a connected, weighted graph and let Y be the subgraph of
P produced by the algorithm. Y cannot have a cycle, since the last
edge added to that cycle would have been within one subtree and
not between two different trees. Y cannot be disconnected, since
the first encountered edge that joins two components of Y would
have been added by the algorithm. Thus, Y is a spanning tree of P.

Let Y1 be a minimum spanning tree for P which has the greatest
number of edges in common with Y. If Y1=Y then Y is a
minimum spanning tree. Otherwise, let e be the first edge
considered by the algorithm that is in Y but not in Y1. Let C1 and
C2 be the components of F which e lies between at the stage when
e is considered. Since Y1 is a tree, Y1+e has a cycle and there is
some different edge f of that cycle that also lies between C1 and
C2. Then Y2=Y1+e-f is also a spanning tree. Since e is
considered by the algorithm before f, the weight of e is at most
equal to the weight of f, and since Y1 is a minimum spanning tree
the weights of these two edges must in fact be equal. Therefore,
Y2 is a minimum spanning tree having more edges in common with
Y than Y1 does, contradicting our assumption about Y1. This
proves that Y must be a minimum spanning tree.

Some References
J. B. Kruskal: On the shortest spanning subtree and the traveling
salesman problem. In: Proceedings of the American Mathematical
Society. 7 (1956), pp. 48-50

R. C. Prim: Shortest connection networks and some
generalisations. In: Bell System Technical Journal, 36 (1957), pp.
1389-1401

D. Cherition and R. E. Tarjan: Finding minimum spanning trees.
In: SIAM Journal of Computing, 5 (Dec. 1976), pp. 724-741

For Biography of Jarnik: http://www-groups.dcs.st-
and.ac.uk/ history/Mathematicians/Jarnik.html

For more about Dijkstra: http://www.cs.utexas.edu/users/EWD/

Kruskal’s recollection:
www.emis.de/journals/AM/97-12/kruskal.ps

Shortest Path Problem

An Algorithm For The Shortest-Path
Problem

We have a connected network with two special nodes designated
the Origin and the Destination and a non-negative distance
assigned to each link
.

Objective of the nth iteration: Find the nth nearest node to the
Origin. Repeat for n = 1,2,3,.. until the nth nearest node is the
Destination.

Input for the nth iteration: n − 1 nearest nodes to the Origin
solved for at the previous iterations, including their shortest path
and distance from the Origin. These nodes, together with the
Origin, will be called solved nodes; the others are unsolved
nodes.

Candidates for the nth nearest node: Each solved node that is
directly connected by a link to one or more unsolved nodes
provides one candidate: the unsolved node with the shortest
connecting link. (Ties provide additional candidates)

Calculation of the nth nearest node: For each solved node and
its candidate, add the distance between them and the distance
from the Origin to this solved node. The candidate with the
smallest such total distance is the nth nearest node (ties provide
additional solved nodes) and its shortest path is the one generating
this distance.

