Introduction to Operations Research

Class 2

February 15, 2023

Handouts

Tables for Fromage and Transportation Problem Linear Programming I (pdf file online)

Linear Algebra

Review Linear Algebra:

Reduce Matrix to Row Echelon Form
Matrix Multiplication
Transpose of a Matrix
Dot Product of Vectors
Elementary Properties of Linear Functions
Concept of a Basis for a Set of Vectors in R^{n}.

OPERATIONS RESEARCH IS

THE DEVELOPMENT AND APPLICATION OF SCIENTIFIC METHODS TO PROVIDE A QUANTITATIVE BASIS FOR DECISION MAKING
IN AN ENVIRONMENT CHARACTERIZED BY COMPLEXITY AND UNCERTAINTY

Review: Characteristics of Operations Research

Characteristics of Operations Research Analysis Today

- Primary Focus on Decision Making Princpal results of the analysis must have direct and unambiguous implication for action.
- An Appraisal Resting on Economic Effectiveness Criteria Comparison of various feasible actions must be based on measurable values
- Reliance on a Formal Mathematical Model
- Dependence on a Computer

Complexity of model
Volume of data
Magnitude of required computations

Review

Questions from Last Time?
Dynamic Programming: Chapter 10 of Hillier and Lieberman
Dynamic Programming is relatively new technique.
Classical Calculus Optimization $\left(f^{\prime}(x)=0\right)$ is much older, but still fruitful

Example: Inventory Model in CBL
Example: Farmer Brown Problem

A Calculus I Problem

Farmer Brown has 200 feet of fencing and wants to use it to enclose a rectangular field. What dimensions maximize area?

Formulating the Model

Let x be the length in feet and y be the width in feet of the rectangle.

The Problem is Maximize $M=x y$
x, y are the Decision Variables
$x y$ is the Objective Function
But there are constraints on the variables x and y
Farmer can't use more than 200 feet of fencing.

$$
2 x+2 y \leq 200
$$

Dimensions of the field must be non-negative

$$
x \geq 0, y \geq 0
$$

The Model

$$
\text { Maximize } M=x y
$$

subject to the constraints

$$
\begin{gathered}
2 x+2 y \leq 200 \\
x \geq 0 \\
y \geq 0
\end{gathered}
$$

Our Central Problem

The Fromage Cheese Company Problem

Assortment	Cheddar	Swiss	Brie	Price	Number of Packages
Fancy	30	10	4	$\$ 4.50$	x
Deluxe	12	8	8	$\$ 4.00$	y
Available	6000	2600	2000		

Note: All quantities of cheeses are in ounces
Question: How many packages of each mixture should we make that will maximize revenue but not exceed our cheese supplies?

$$
\begin{gathered}
\text { Problem: Maximize } M=4.5 x+4 y \\
\text { subject to constraints } \\
30 x+12 y \leq 6000 \text { (Cheddar) } \\
10 x+8 y \leq 2600 \text { (Swiss) } \\
4 x+8 y \leq 2000 \text { (Brie) } \\
x, y \geq 0
\end{gathered}
$$

Dual of the Fromage Problem

Suppose you want to buy all of the cheese for your own purposes. How much should you offer?
Let $c=$ dollars per ounce of Cheddar
Let $s=$ dollars per ounce of Swiss
Let $b=$ dollars per ounce of Brie
Then you want to minimize $6000 c+2600 s+2000 b$ subject to
$30 c+10 s+4 b \geq 4.5$
$12 c+8 s+8 b \geq 4$
$c, s, b \geq 0$
This problem is called the DUAL of the Fromage Problem which is called the PRIMAL

A Relationship Between Primal and Dual

Primal

Maximize $M=4.5 x+4 y \quad$ Minimize $6000 c+2600 s+2000 b$

$$
\begin{gathered}
\text { subject to } \\
30 x+12 y \leq 6000 \\
10 x+8 y \leq 2600 \\
4 x+8 y \leq 2000 \\
x, y \geq 0
\end{gathered}
$$

Dual
subject to

$$
30 c+10 s+4 b \geq 4.5
$$

$$
12 c+8 s+8 b \geq 4
$$

$$
c, s, b \geq 0
$$

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
30 & 12 & 6000 \\
10 & 8 & 2600 \\
4 & 8 & 2000
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
30 & 10 & 4 & 4.5 \\
12 & 8 & 8 & 4
\end{array}\right)
\end{aligned}
$$

Transportation Problem

[^0]
Transportation Problem

3 factories: Seattle, San Francisco, Minneapolis
4 warehouses (WH): Sacramento, Salt Lake City, Rapid City SD, Albuquerque

	WH 1	WH 2	WH 3	WH 4	Supply
Factory 1	464	513	654	867	75
Factory 2	352	416	690	791	125
Factory 3	995	682	388	685	100
Demand	80	65	70	85	300

Supply and demand measured in truckloads.
Matrix elements: shipping costs in dollars per truckload

Problem: Minimize total shipping costs while meeting demand and not exceeding supply.

Decision Variables: $x_{i j}=$ number of truckloads to ship from factory i to warehouse j.

Minimize $m=464 x_{11}+513 x_{12}+\ldots+685 x_{34}$
subject to supply constraints

$$
\begin{gathered}
x_{11}+x_{12}+x_{13}+x_{14} \leq 75 \\
x_{21}+x_{22}+x_{23}+x_{24} \leq 125 \\
x_{31}+x_{32}+x_{33}+x_{34} \leq 100
\end{gathered}
$$

and demand constraints

$$
\begin{aligned}
& x_{11}+x_{21}+x_{31} \geq 80 \\
& x_{12}+x_{22}+x_{32} \geq 65 \\
& x_{13}+x_{23}+x_{33} \geq 70 \\
& x_{14}+x_{24}+x_{34} \geq 85
\end{aligned}
$$

and nonnegatiivity constraints

$$
\text { each } x_{i j} \geq 0
$$

The Linear Programming Problem

Each of the last 3 problems (Fromage, its Dual, Transportation) is an example of what is called a Linear Programming Problem:

Optimize a LINEAR function subject to a finite number of LINEAR constraints (equations or inequalities)

Some Linear Programming Applications

- Product Mix
- Transportation Problems
- Assignment Problems
- Diet Problems
- Media Selection
- Blending Problems
- Portfolio Selection
- Project Management Problems
- Market Research Problems

[^0]: 4ロ〉4司〉4 三

