More on Fundamental Insight S-O-B Method for Duals
 Absolute Values in Objective Function

Class 16

March 27, 2023

Handouts

Sensible Rules for Remembering Duals The S-O-B Method

Relationship

Between
Fundamental Insight and
Duality

Relationship Between Fundamental Insight and Duality

Primal Problem	Dual Problem
Maximize $Z=c \mathbf{x}$	Minimize $W=\mathbf{y} b$
subject to	subject to
$A \mathbf{x} \leq b$	$\mathbf{y} A \geq c$
and $\mathbf{x} \geq 0$	and $\mathbf{y} \geq 0$.

Examine Objective Function Row After Any Iteration

	Original Variables	Slack Variables
Basic Variables	$x_{1} x_{2} \ldots x_{n}$	$x_{n+1} \quad x n+2 \ldots x_{n+m}$
Z	z1-c1 z2-c2 $\ldots \mathrm{zn}-\mathrm{cn}$	$\mathrm{y} 1 \mathrm{y} 2 \ldots \mathrm{ym}$

where $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ is the vector which the simplex method added to the original coefficients ($0,0, \ldots, 0$)
$\mathbf{z}=\left(z_{1}, z_{2}, . ., z_{n}\right)$ is the vector the simplex method added to original objective function row $\left(-c_{1},-c_{2}, \ldots,-c_{n}\right)$

Fromage Example: Examine Objective Function Row

	Z	x	y	u	v	w	W
Original	1	-4.5	-4	0	0	0	0
Iteration 1	1	0	$-11 / 5$	$3 / 20$	0	0	900
Iteration 2	1	0	0	$-1 / 30$	$11 / 20$	0	1230
Iteration 3	1	0	0	0	$5 / 12$	$1 / 12$	1250
Claim: $W=\mathbf{y b}=\sum_{i=1}^{m} b_{i} y_{i}$							

Iteration 1: $(3 / 20,0,0) \mathbf{b}=900+0+0=900$
Iteration 2: $(-1 / 30,11 / 20,0) \mathbf{b}=-200+1430+0=1230$
Iteration 3: $(0,5 / 12,1 / 12) \mathbf{b}=0+3250 / 3+500 / 3=1250$

$$
\mathbf{z}=\mathbf{y} A \text { so } z_{j}=\sum_{i=1}^{m} y_{i} a_{i j}
$$

Optimality Conditions

$$
z_{j}-c_{j} \geq 0 \Rightarrow z_{j} \geq c_{j}, \text { for all } j, y_{i} \geq 0 \text { for all } i
$$

Hence $\mathbf{y} A \geq \mathbf{c}, \mathbf{y} \geq \mathbf{0}$
The only feasible solution of \mathbf{y} problem is an optimal solution of the primal problem. Thus $\mathbf{c x}$ is the minimum possible feasible value for $\mathbf{y b}$.

Quick ∇ V Review

We can express the final Objective Function Row as
\mathbf{z} - \mathbf{c} where \mathbf{z} represents what was added:

$$
\mathbf{z}-\mathbf{c}=[0,5 / 12,1 / 12] \mathrm{A}-\mathbf{c}
$$

and $[0,5 / 12,1 / 12]$ is the vector of shadow prices.
IDEA: We can reconstruct parts of the final tableau from other parts and from the original data.

$$
\begin{aligned}
& \text { General Case } \\
& \text { A, } \quad \mathbf{x} \quad \mathbf{b} \\
& m \text { by } n \quad n \text { by } 1 \quad m \text { by } 1
\end{aligned}
$$

Augment A with $m \times m$ identity matrix \mathbb{I} and slack variables \mathbf{x}_{s} (an $m \times 1$ vector)

$$
\begin{gathered}
{[A, \mathbb{I}]\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{x}_{s}
\end{array}\right]=\mathbf{b}} \\
(m \times m+n)(m+n \times 1)=(m \times 1) \\
A \mathbf{x}+\mathbb{I} \mathbf{x}_{s}=b
\end{gathered}
$$

(A system of m equations in $m+n$ unknowns)

The Matrix Form of Equations in Initial Tableau:

$$
\left[\begin{array}{ccc}
1 & -\mathbf{c} & \mathbf{0} \\
\mathbf{0} & A & \mathbb{I}
\end{array}\right]\left[\begin{array}{l}
Z \\
\mathbf{x} \\
\mathbf{x}_{s}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathbf{b}
\end{array}\right]
$$

After an iteration, the right hand side of the equation becomes

$$
\left[\begin{array}{c}
Z \\
\mathbf{x}_{B}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{c}_{B} B^{-1} \mathbf{b} \\
B^{-1} \mathbf{b}
\end{array}\right]=\left[\begin{array}{cc}
1 & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1}
\end{array}\right]\left[\begin{array}{l}
0 \\
\mathbf{b}
\end{array}\right]
$$

Thus original right hand side was multiplied on the left by

$$
\left[\begin{array}{cc}
1 & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1}
\end{array}\right]
$$

so left hand side was also multiplied by this matrix

$$
\left[\begin{array}{cc}
1 & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1}
\end{array}\right]\left[\begin{array}{ccc}
1 & -\mathbf{c} & \mathbf{0} \\
\mathbf{0} & A & \mathbb{I}
\end{array}\right]
$$

Thus the left hand side has the form

$$
\left[\begin{array}{cc}
1 & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1}
\end{array}\right]\left[\begin{array}{ccc}
1 & -\mathbf{c} & \mathbf{0} \\
\mathbf{0} & A & \mathbb{I}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -\mathbf{c}+\mathbf{c}_{B} B^{-1} A & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1} A & B^{-1}
\end{array}\right]
$$

and the matrix form of the equations of the tableau is

$$
\left[\begin{array}{ccc}
1 & -\mathbf{c}+\mathbf{c}_{B} B^{-1} A & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1} A & B^{-1}
\end{array}\right]\left[\begin{array}{c}
Z \\
\mathbf{x} \\
\mathbf{x}_{s}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{c}_{B} B^{-1} \mathbf{b} \\
B^{-1} \mathbf{b}
\end{array}\right]
$$

Earlier:

If we know the original data ($\mathrm{A}, \mathbf{c}, \mathbf{b}$) and which variables are in the basis, then we can determine B^{-1} and hence we can construct the entire tableau.

	Z	Original Variables	Slack Variables	
Z-row	1	$\mathbf{c}_{B} B^{-1} A-\mathbf{c}$	$\mathbf{c}_{B} B^{-1}$	$\mathbf{c}_{B} B^{-1} \mathbf{b}$
Other rows	$\mathbf{0}$	$B^{-1} A$	B^{-1}	$B^{-1} \mathbf{b}$

Hillier and Lieberman use \mathbf{S}^{*} for B^{-1} if we have reached the final tableau with an optimal solution.

Initial Tableau for Fromage Problem

	Z	x	y	u	v	w	
Z	1	-4.5	-4	0	0	0	0
u	0	30	12	1	0	0	6000
v	0	10	8	0	1	0	2600
w	0	4	8	0	0	1	2000

	Z	Original Variables	Slack Variables	
Z-row	1	$\mathbf{c}_{B} B^{-1} A-\mathbf{c}$	$\mathbf{c}_{B} B^{-1}$	$\mathbf{c}_{B} B^{-1} \mathbf{b}$
Other rows	$\mathbf{0}$	$B^{-1} A$	B^{-1}	$B^{-1} \mathbf{b}$

	Original Variables	Slack Variables		
Z-row	$\mathbf{c}_{B} B^{-1} A-\mathbf{c}$	$\mathbf{c}_{B} B^{-1}$	$\mathbf{c}_{B} B^{-1} \mathbf{b}$	A
Other rows	$B^{-1} A$	B^{-1}	$B^{-1} \mathbf{b}$	

Second Example
Suppose we take x, v, w as basis.

$$
B=\left[\begin{array}{ccc}
30 & 0 & 0 \\
10 & 1 & 0 \\
4 & 0 & 1
\end{array}\right] \Longrightarrow B^{-1}=\left[\begin{array}{ccc}
1 / 30 & 0 & 0 \\
-1 / 3 & 1 & 0 \\
-2 / 15 & 0 & 1
\end{array}\right]
$$

	Original Variables	Slack Variables	
Z-row	$\mathbf{c}_{B} B^{-1} A-\mathbf{c}$	$\mathbf{c}_{B} B^{-1}$	$\mathbf{c}_{B} B^{-1} \mathbf{b}$
Other rows	$B^{-1} A$	B^{-1}	$B^{-1} \mathbf{b}$

$$
\begin{gathered}
B^{-1} \mathbf{b}=\left[\begin{array}{ccc}
1 / 30 & 0 & 0 \\
-1 / 3 & 1 & 0 \\
-2 / 15 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
6000 \\
2600 \\
2000
\end{array}\right]=\left[\begin{array}{c}
200 \\
600 \\
1200
\end{array}\right] \\
\mathbf{c}_{B}\left(B^{-1} \mathbf{b}\right)=\left[\begin{array}{lll}
9 / 2 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
200 \\
600 \\
1200
\end{array}\right]=900 \\
\mathbf{c}_{B} B^{-1}=\left[\begin{array}{lll}
9 / 2 & 0 & 0
\end{array}\right] B^{-1}=\left[\begin{array}{lll}
3 / 20 & 0 & 0
\end{array}\right]
\end{gathered}
$$

	Original Variables	Slack Variables	
Z-row	$\mathbf{c}_{B} B^{-1} A-\mathbf{c}$	$\mathbf{c}_{B} B^{-1}$	$\mathbf{c}_{B} B^{-1} \mathbf{b}$
Other rows	$B^{-1} A$	B^{-1}	$B^{-1} \mathbf{b}$

$$
\begin{gathered}
B^{-1} \mathbf{b}=\left[\begin{array}{c}
200 \\
600 \\
1200
\end{array}\right], \mathbf{c}_{B}\left(B^{-1} \mathbf{b}\right)=900, \mathbf{c}_{B} B^{-1}=\left[\begin{array}{lll}
\frac{3}{20} & 0 & 0
\end{array}\right] \\
B^{-1} A=\left[\begin{array}{ccc}
1 / 30 & 0 & 0 \\
-1 / 3 & 1 & 0 \\
-2 / 15 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
30 & 12 \\
10 & 8 \\
4 & 8
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 / 5 \\
0 & 4 \\
0 & 32 / 5
\end{array}\right] \\
\mathbf{c}_{B} B^{-1} A-\mathbf{c}=\left[\begin{array}{lll}
\frac{9}{2} & 0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & \frac{2}{5} \\
0 & 4 \\
0 & \frac{32}{5}
\end{array}\right]=\left[\begin{array}{cc}
\frac{9}{2} & \frac{9}{5}
\end{array}\right]-\left[\begin{array}{ll}
\frac{9}{2} & 4
\end{array}\right] \\
=\left[\begin{array}{cc}
0 & -\frac{11}{5}
\end{array}\right]
\end{gathered}
$$

	Original Variables	Slack Variables	
Z-row	$\mathbf{c}_{B} B^{-1} A-\mathbf{c}$	$\mathbf{c}_{B} B^{-1}$	$\mathbf{c}_{B} B^{-1} \mathbf{b}$
Other rows	$B^{-1} A$	B^{-1}	$B^{-1} \mathbf{b}$

$$
B^{-1} \mathbf{b}=\left[\begin{array}{c}
200 \\
600 \\
1200
\end{array}\right], \mathbf{c}_{B}\left(B^{-1} \mathbf{b}\right)=900, \mathbf{c}_{B} B^{-1}=\left[\begin{array}{ccc}
\frac{3}{20} & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
B^{-1} A= & {\left[\begin{array}{cc}
1 & 2 / 5 \\
0 & 4 \\
0 & 32 / 5
\end{array}\right], \mathbf{c}_{B} B^{-1} A-\mathbf{c}=\left[\begin{array}{cc}
0 & -11 / 5
\end{array}\right] } \\
& {\left[\begin{array}{cc|ccc|c}
0 & -11 / 5 & 3 / 20 & 0 & 0 & 900 \\
\hline 1 & 2 / 5 & 1 / 30 & 0 & 0 & 200 \\
0 & 4 & -1 / 3 & 1 & 0 & 600 \\
0 & 32 / 5 & -2 / 15 & 0 & 1 & 1200
\end{array}\right] }
\end{aligned}
$$

Sensible Rules

For Remembering Duals

The S-O-B Method by Arthur Benjamin

Benjamin provides

- An easy way to form dual when primal has $\leq,=$ and \geq constraints.
- Another way to think about the dual

S-O-B Method

$$
\text { S = Sensible } \quad 0=\text { Odd } \quad B=\text { Bizarre }
$$

Step 1: Label Each Variable:
S if ≥ 0
O if unrestricted B if ≤ 0

Step 2: Label Each Constraint

Maximization Problem	Minimization Problem
S if \leq	S if \geq
O if $=$	O if $=$
B if \geq	B if \leq

A CONSTRAINT in the Dual is $\mathrm{S}, \mathrm{O}, \mathrm{B}$ if the corresponding VARIABLE in the primal is S, O, B.

Example: Maximize $4 x_{1}+5 x_{2}$ subject to

$$
\begin{gathered}
3 x_{1}+1 x_{2} \leq 27 \\
5 x_{1}+5 x_{2}=6 \\
6 x_{1}+4 x_{2} \geq 6 \\
x_{1} \geq 0, x_{2} \geq 0
\end{gathered}
$$

Dual will have the form
Minimize $27 y_{1}+6 y_{2}+6 y_{3}$

$$
\begin{gathered}
\text { subject to } \\
3 y_{1}+5 y_{2}+6 y_{3} ? 4 \\
1 y_{1}+5 y_{2}+4 y_{3} ? 5 \\
y_{1}, y_{2}, y_{3}
\end{gathered}
$$

Use the S-O-B Method
Step 1: Label Variables in Primal:
Example: Maximize $4 x_{1}+5 x_{2}$
subject to

$$
\begin{gathered}
3 x_{1}+1 x_{2} \leq 27 \\
5 x_{1}+5 x_{2}=6 \\
6 x_{1}+4 x_{2} \geq 6 \\
x_{1} \geq 0, x_{2} \geq 0 \\
\text { S, S }
\end{gathered}
$$

Dual will have the form
Minimize $27 y_{1}+6 y_{2}+6 y_{3}$
subject to

$$
3 y_{1}+5 y_{2}+6 y_{3} ? 4
$$

$$
1 y_{1}+5 y_{2}+4 y_{3} ? 5
$$

$$
y_{1}, y_{2}, y_{3}
$$

Use the S-O-B Method

Step 2: Label Constraints in Primal:

Example: Maximize $4 x_{1}+5 x_{2}$
subject to

$$
\begin{gathered}
3 x_{1}+1 x_{2} \leq 27 \mathbf{S} \\
5 x_{1}+5 x_{2}=6 \mathbf{O} \\
6 x_{1}+4 x_{2} \geq 6 \text { B } \\
x_{1} \geq 0, x_{2} \geq 0 \\
\mathbf{S}, \mathbf{S}
\end{gathered}
$$

Dual will have the form
Minimize $27 y_{1}+6 y_{2}+6 y_{3}$
subject to
$3 y_{1}+5 y_{2}+6 y_{3} ? 4$
$1 y_{1}+5 y_{2}+4 y_{3} ? 5$
y_{1}, y_{2}, y_{3}

Use the S-O-B Method
Label Variables and Constraints in Dual
Example: Maximize $4 x_{1}+5 x_{2}$
subject to

$$
\begin{gathered}
3 x_{1}+1 x_{2} \leq 27 \mathbf{S} \\
5 x_{1}+5 x_{2}=6 \mathbf{O} \\
6 x_{1}+4 x_{2} \geq 6 \mathbf{B} \\
x_{1} \geq 0, x_{2} \geq 0 \\
\mathbf{S , S}
\end{gathered}
$$

Dual will have the form
Minimize $27 y_{1}+6 y_{2}+6 y_{3}$ subject to
$3 y_{1}+5 y_{2}+6 y_{3} ? 4 \mathbf{S}$
$1 y_{1}+5 y_{2}+4 y_{3} ? 5 \mathbf{S}$
y_{1}, y_{2}, y_{3}
S, O, B

Use the S-O-B Method

Put in Inequalities in Dual

$$
\begin{gathered}
\text { Example: Maximize } 4 x_{1}+5 x_{2} \\
\text { subject to } \\
3 x_{1}+1 x_{2} \leq 27 \mathbf{S} \\
5 x_{1}+5 x_{2}=6 \mathbf{0} \\
6 x_{1}+4 x_{2} \geq 6 \mathbf{B} \\
x_{1} \geq 0, x_{2} \geq 0 \\
\mathbf{S}, \mathbf{S}
\end{gathered}
$$

Dual will have the form
Minimize $27 y_{1}+6 y_{2}+6 y_{3}$ subject to
$3 y_{1}+5 y_{2}+6 y_{3} \geq 4 \mathbf{S}$
$1 y_{1}+5 y_{2}+4 y_{3} \geq 5 \mathrm{~S}$
$y_{1} \geq 0, y_{2}$ unrestricted, $y_{3} \leq 0$ S, O, B

Not Quite Linear Objective Functions

Suppose we have a problem with objective function of the form Maximize $|12 x-17 y|$
Note that $|12 x-17 y|$ is not a linear function. Here's an idea: For any real number W, we have

$$
\begin{gathered}
P=|W|+W=\left\{\begin{array}{c}
2 W \text { if } x \geq 0 \\
0 \text { if } W<0
\end{array}\right. \\
\text { and } \\
N=|W|-W=\left\{\begin{array}{c}
0 \text { if } W \geq 0 \\
2|W| \text { if } W<0
\end{array}\right.
\end{gathered}
$$

Then $P+N=2|W|$ and $P-N=2 W$
Then Maximizing $2|W|$ is equivalent to Maximizing $P+N$ and we can add a new constraint $-2 W+P-N=0$.

Next Time:

Systematic Study of Sensitivity Analysis

