More on Fundamental Insight S-O-B Method for Duals Absolute Values in Objective Function

Class 16

March 27, 2023

Handouts

Sensible Rules for Remembering Duals The S-O-B Method

(ロ)、

Relationship **Between Fundamental Insight** and **Duality**

Relationship Between Fundamental Insight and Duality

Primal Problem	Dual Problem
Maximize $Z = c\mathbf{x}$	Minimize $W = \mathbf{y}\mathbf{b}$
subject to	subject to
$A\mathbf{x} \leq \mathbf{b}$	y A ≥ <i>c</i>
and $\mathbf{x} \ge 0$	and $\mathbf{y} \ge 0$.

Examine Objective Function Row After Any Iteration

 $\begin{array}{c|c} \mbox{Basic Variables} & Original Variables \\ \mbox{Basic Variables} & x_1 \ x_2 \ \dots \ x_n & x_{n+1 \ xn+2 \ \dots \ x_{n+m}} \\ \mbox{Z} & z1\mbox{-}c1 \ z2 \ - \ c2 \ \dots \ zn \ - \ cn & y1 \ y2 \ \dots \ ym \end{array}$

where $\mathbf{y} = (y_1, y_2, ..., y_m)$ is the vector which the simplex method added to the original coefficients (0, 0, ..., 0) $\mathbf{z} = (z_1, z_2, ..., z_n)$ is the vector the simplex method added to original objective function row $(-c_1, -c_2, ..., -c_n)$

Fromage Example: Examine Objective Function Row

	Ζ	X	У	и	V	W	W
Original	1	-4.5	-4	0	0	0	0
Iteration 1	1	0	-11/5	3/20	0	0	900
Iteration 2	1	0	0	-1/30	11/20	0	1230
Iteration 3	1	0	0	0	5/12	1/12	1250

$$\mathsf{Claim}: W = \mathbf{yb} = \sum_{i=1}^m b_i y_i$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Iteration 1: (3/20, 0, 0) **b** = 900 + 0 + 0 = 900 Iteration 2: (-1/30, 11/20, 0) **b** = -200 + 1430 + 0 = 1230 Iteration 3: (0, 5/12, 1/12) **b** = 0 + 3250/3 + 500/3 = 1250

$$\mathbf{z} = \mathbf{y}A$$
 so $z_j = \sum_{i=l}^m y_i a_{ij}$

Optimality Conditions

$$z_j - c_j \ge 0 \Rightarrow z_j \ge c_j$$
, for all $j, y_i \ge 0$ for all i

Hence $\mathbf{y}A \ge \mathbf{c}, \mathbf{y} \ge \mathbf{0}$ The only feasible solution of \mathbf{y} problem is an optimal solution of the primal problem. Thus \mathbf{cx} is the minimum possible feasible value for \mathbf{yb} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quick VVV Review

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We can express the final Objective Function Row as

z - **c** where **z** represents what was added:

$${\boldsymbol{\mathsf{z}}}$$
 - ${\boldsymbol{\mathsf{c}}}$ = [0, 5/12, 1/12] A - ${\boldsymbol{\mathsf{c}}}$

and [0, 5/12, 1/12] is the vector of shadow prices.

IDEA: We can reconstruct parts of the final tableau from other parts and from the original data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Case A, \mathbf{x} **b** *m* by *n n* by 1 *m* by 1

Augment A with $m \times m$ identity matrix I and slack variables \mathbf{x}_s (an $m \times 1$ vector)

$$\begin{bmatrix} A, \mathbb{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{x}_{s} \end{bmatrix} = \mathbf{b}$$
$$(m \times m + n) \ (m + n \times 1) = (m \times 1)$$
$$A \ \mathbf{x} + \mathbb{I} \ \mathbf{x}_{s} = b$$

(A system of *m* equations in m + n unknowns)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Matrix Form of Equations in Initial Tableau:

$$\begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & A & \mathbb{I} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_{s} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}$$

After an iteration, the right hand side of the equation becomes

$$\begin{bmatrix} Z \\ \mathbf{x}_B \end{bmatrix} = \begin{bmatrix} \mathbf{c}_B B^{-1} \mathbf{b} \\ B^{-1} \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}$$

Thus original right hand side was multiplied on the left by

$$\left[\begin{array}{cc} 1 & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} \end{array}\right]$$

so left hand side was also multiplied by this matrix

$$\begin{bmatrix} 1 & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} \end{bmatrix} \begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & A & \mathbb{I} \end{bmatrix}$$

Thus the left hand side has the form

$$\begin{bmatrix} 1 & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} \end{bmatrix} \begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & A & \mathbb{I} \end{bmatrix} = \begin{bmatrix} 1 & -\mathbf{c} + \mathbf{c}_B B^{-1} A & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} A & B^{-1} \end{bmatrix}$$

and the matrix form of the equations of the tableau is

$$\begin{bmatrix} 1 & -\mathbf{c} + \mathbf{c}_B B^{-1} A & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} A & B^{-1} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_s \end{bmatrix} = \begin{bmatrix} \mathbf{c}_B B^{-1} \mathbf{b} \\ B^{-1} \mathbf{b} \end{bmatrix}$$

Earlier:

If we know the original data (A, c, b) and which variables are in the basis, then we can determine B^{-1} and hence we can construct the entire tableau.

	Z	Original Variables	Slack Variables	
Z-row	1	$\mathbf{c}_B B^{-1} A - \mathbf{c}$	$\mathbf{c}_B B^{-1}$	$\mathbf{c}_B B^{-1} \mathbf{b}$
Other rows	0	$B^{-1}A$	B^{-1}	$B^{-1}\mathbf{b}$

Hillier and Lieberman use S* for B^{-1} if we have reached the final tableau with an optimal solution.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Initial Tableau for Fromage Problem

	Z	X	у	u	v	W	
Ζ	1	-4.5	-4	0	0	0	0
и	0	30			0	0	6000
v	0	10	8	0	1	0	2600
w	0	4	8	0	0	1	2000

	Z	Original Variables	Slack Variables	
Z-row	1	$c_B B^{-1} A - c$	$\mathbf{c}_B B^{-1}$	$\mathbf{c}_B B^{-1} \mathbf{b}$
Other rows	0	$B^{-1}A$	B^{-1}	$B^{-1}\mathbf{b}$

Z-rowOriginal VariablesSlack VariablesZ-row
$$\mathbf{c}_B B^{-1} A - \mathbf{c}$$
 $\mathbf{c}_B B^{-1}$ $\mathbf{c}_B B^{-1} \mathbf{b}$ Other rows $B^{-1} A$ B^{-1} $B^{-1} \mathbf{b}$

Second Example Suppose we take x, v, w as basis.

$$B = \begin{bmatrix} 30 & 0 & 0 \\ 10 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \Longrightarrow B^{-1} = \begin{bmatrix} 1/30 & 0 & 0 \\ -1/3 & 1 & 0 \\ -2/15 & 0 & 1 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Z-rowOriginal VariablesSlack VariablesZ-row
$$\mathbf{c}_B B^{-1} A - \mathbf{c}$$
 $\mathbf{c}_B B^{-1} \mathbf{b}$ Other rows $B^{-1} A$ B^{-1} $B^{-1} \mathbf{b}$

$$B^{-1}\mathbf{b} = \begin{bmatrix} 1/30 & 0 & 0\\ -1/3 & 1 & 0\\ -2/15 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6000\\ 2600\\ 2000 \end{bmatrix} = \begin{bmatrix} 200\\ 600\\ 1200 \end{bmatrix}$$

$$\mathbf{c}_B(B^{-1}\mathbf{b}) = \begin{bmatrix} 9/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 200 \\ 600 \\ 1200 \end{bmatrix} = 900$$

$$\mathbf{c}_B B^{-1} = \begin{bmatrix} 9/2 & 0 & 0 \end{bmatrix} B^{-1} = \begin{bmatrix} 3/20 & 0 & 0 \end{bmatrix}$$

▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲目 ● ● ● ●

$$\begin{array}{c|c} \mathbf{Z}\text{-row} \\ \text{Other rows} \end{array} \begin{vmatrix} \text{Original Variables} & \text{Slack Variables} \\ \mathbf{c}_B B^{-1} A - \mathbf{c} & \mathbf{c}_B B^{-1} \\ B^{-1} A & B^{-1} \end{vmatrix} \begin{vmatrix} \mathbf{c}_B B^{-1} \mathbf{b} \\ B^{-1} \mathbf{b} \end{vmatrix}$$
$$B^{-1} \mathbf{b} = \begin{bmatrix} 200 \\ 600 \\ 1200 \end{bmatrix}, \mathbf{c}_B (B^{-1} \mathbf{b}) = 900, \mathbf{c}_B B^{-1} = \begin{bmatrix} \frac{3}{20} & 0 & 0 \end{bmatrix}$$
$$B^{-1} A = \begin{bmatrix} 1/30 & 0 & 0 \\ -1/3 & 1 & 0 \\ -2/15 & 0 & 1 \end{bmatrix} \begin{bmatrix} 30 & 12 \\ 10 & 8 \\ 4 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2/5 \\ 0 & 4 \\ 0 & 32/5 \end{bmatrix}$$
$$\mathbf{c}_B B^{-1} A - \mathbf{c} = \begin{bmatrix} \frac{9}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & \frac{2}{5} \\ 0 & 4 \\ 0 & \frac{32}{5} \end{bmatrix} = \begin{bmatrix} \frac{9}{2} & \frac{9}{5} \end{bmatrix} - \begin{bmatrix} \frac{9}{2} & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -\frac{11}{5} \end{bmatrix}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Z-rowOriginal VariablesSlack VariablesZ-row
$$\mathbf{c}_B B^{-1} A - \mathbf{c}$$
 $\mathbf{c}_B B^{-1} \mathbf{b}$ Other rows $B^{-1} A$ $B^{-1} \mathbf{b}$

$$B^{-1}\mathbf{b} = \begin{bmatrix} 200\\ 600\\ 1200 \end{bmatrix}, \mathbf{c}_B(B^{-1}\mathbf{b}) = 900, \mathbf{c}_B B^{-1} = \begin{bmatrix} \frac{3}{20} & 0 & 0 \end{bmatrix}$$

$$B^{-1}A = \begin{bmatrix} 1 & 2/5 \\ 0 & 4 \\ 0 & 32/5 \end{bmatrix}, \mathbf{c}_B B^{-1}A - \mathbf{c} = \begin{bmatrix} 0 & -11/5 \end{bmatrix}$$
$$\begin{bmatrix} 0 & -11/5 & 3/20 & 0 & 0 & 900 \\ \hline 1 & 2/5 & 1/30 & 0 & 0 & 200 \\ 0 & 4 & -1/3 & 1 & 0 & 600 \\ 0 & 32/5 & -2/15 & 0 & 1 & 1200 \end{bmatrix}$$

Sensible Rules For Remembering Duals The S-O-B Method by Arthur Benjamin 31715926 53⁵8979 3238462

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Benjamin provides

► An easy way to form dual when primal has ≤, = and ≥ constraints.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Another way to think about the dual

S-O-B Method

S = Sensible O = Odd B = Bizarre

Step 2: Label Each Constraint				
Maximization Problem	Minimization Problem			
S if \leq	S if \geq			
O if =	O if =			
B if \geq	B if \leq			

A CONSTRAINT in the Dual is S, O, B if the corresponding VARIABLE in the primal is S, O, B.

Example: Maximize
$$4x_1 + 5x_2$$

subject to
 $3x_1 + 1x_2 \le 27$
 $5x_1 + 5x_2 = 6$
 $6x_1 + 4x_2 \ge 6$
 $x_1 \ge 0, x_2 \ge 0$

Dual will have the form Minimize $27y_1 + 6y_2 + 6y_3$ subject to $3y_1 + 5y_2 + 6y_3$?4 $1y_1 + 5y_2 + 4y_3$?5 y_1, y_2, y_3

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Use the S-O-B Method Step 1: Label Variables in Primal: Example: Maximize $4x_1 + 5x_2$ subject to $3x_1 + 1x_2 \le 27$ $5x_1 + 5x_2 = 6$ $6x_1 + 4x_2 \ge 6$ $x_1 \ge 0, x_2 \ge 0$ S. S

> Dual will have the form Minimize $27y_1 + 6y_2 + 6y_3$ subject to $3y_1 + 5y_2 + 6y_3$?4 $1y_1 + 5y_2 + 4y_3$?5 y_1, y_2, y_3

Use the S-O-B Method Step 2: Label Constraints in Primal: Example: Maximize $4x_1 + 5x_2$ subject to $3x_1 + 1x_2 \le 27$ S $5x_1 + 5x_2 = 6$ O $6x_1 + 4x_2 \ge 6$ B $x_1 \ge 0, x_2 \ge 0$ S.S

> Dual will have the form Minimize $27y_1 + 6y_2 + 6y_3$ subject to $3y_1 + 5y_2 + 6y_3$?4 $1y_1 + 5y_2 + 4y_3$?5 y_1, y_2, y_3

Use the S-O-B Method Label Variables and Constraints in Dual Example: Maximize $4x_1 + 5x_2$ subject to $3x_1 + 1x_2 \le 27$ S $5x_1 + 5x_2 = 6$ O $6x_1 + 4x_2 \ge 6$ B $x_1 \ge 0, x_2 \ge 0$

S,S

Dual will have the form Minimize $27y_1 + 6y_2 + 6y_3$ subject to $3y_1 + 5y_2 + 6y_3$?4 **S** $1y_1 + 5y_2 + 4y_3$?5 **S** y_1, y_2, y_3 **S**, **O**, **B**

Use the S-O-B Method Put in Inequalities in Dual Example: Maximize $4x_1 + 5x_2$ subject to $3x_1 + 1x_2 \le 27$ S $5x_1 + 5x_2 = 6$ O $6x_1 + 4x_2 \ge 6$ B $x_1 \ge 0, x_2 \ge 0$ S,S

Dual will have the form Minimize $27y_1 + 6y_2 + 6y_3$ subject to $3y_1 + 5y_2 + 6y_3 \ge 4$ S $1y_1 + 5y_2 + 4y_3 \ge 5$ S $y_1 \ge 0, y_2$ unrestricted, $y_3 \le 0$ S, O, B

Not Quite Linear Objective Functions

Suppose we have a problem with objective function of the form $\begin{array}{l} \text{Maximize } |12x-17y| \\ \text{Note that } |12x-17y| \text{ is not a linear function.} \\ \text{Here's an idea: For any real number } W, we have \end{array}$

$$P = |W| + W = \begin{cases} 2W \text{ if } x \ge 0\\ 0 \text{ if } W < 0 \end{cases}$$

and

$$N = |W| - W = \begin{cases} 0 \text{ if } W \ge 0\\ 2|W| \text{ if } W < 0 \end{cases}$$

Then P + N = 2|W| and P - N = 2W

Then Maximizing 2|W| is equivalent to Maximizing P + Nand we can add a new constraint -2W + P - N = 0.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Next Time: Systematic Study of Sensitivity Analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで