Another Way to Look at Duality; Parametric Programming And Prelude to Sensitivity Analysis

Class 15

Friday, March 17, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

副を (語を (語を) 語) のへの

Handouts

Notes on Exam 1 **Assignment 6** Sensible Rules for Remembering Duals: The S–O–B Method

うせん 同一人用 人用 人用 人口 マ

Another Way To Look At Duality

Consider Dual to Fromage Cheese Company Problem Minimize 6000C + 2600S + 2000B subject to 30C + 10S + 4B > 4.512C + 8S + 8B > 4C, S, B > 0Let C, S, B be any feasible solution. Multiply the first constraint by 150 and the second by 100: 4500C + 1500S + 600B > 6751200C + 800S + 800B > 400.Add the constraints 5700C + 2300S + 1400B > 1175. But 6000C + 2600S + 2000B > 5700C + 2300S + 1400B > 1075 We want to find the **best multipliers** $x, y \ge 0$ such that $x(30C + 10S + 4B) \ge 4.5x$ and $y(12C + 8S + 8B) \ge 4y$ so that $(30x + 12y)C + (10x + 8y)S + (4x + 8y)B \ge 4.5x + 4y$ is as large as possible and $6000C + 2600S + 2000B) \ge (30x + 12y)C + (10x + 8y)S + (4x + 8y)B$ Comparing coefficients of C, S, B indicates $6000 \ge 30x + 12y, 2600 \ge 10x + 8y, 2000 \ge 4x + 8y.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction Το **Parametric Programming** and **Sensitivity Analysis**

As Usual, a Cheesy Start

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Fromage Cheese ProblemDual ProblemMaximize
$$4.5x + 4y$$

subject toMinimize $6000C + 2600S + 2000B$
subject to $30x + 12y \le 6000$ (Cheddar)
 $10x + 8y \le 2600$ (Swiss)
 $4x + 8y \le 2000$ (Brie)Minimize $6000C + 2600S + 2000B$
 $30C + 10S + 4B \ge 4.5$
 $12C + 8S + 8B \ge 4$ $x, y \ge 0$ $C, S, B \ge 0$ x and y are number of
packages of each assortment
to prepare C, S, B are the price per ounce
to offer for the cheeses

Consider the Revenue Function: $M = 4.5x + 4y = 4.5(x + \frac{4}{4.5}y)$

590

프 🗼 🛛 프

Change in Relative Prices Charged

Revenue Function: $M = 4.5x + 4y = 4.5(x + \frac{4}{4.5}y) = M = 4.5(x + \theta y)$

Vertex	Coordinates	$M = x + \theta y$	
0	(0,0)	0	
A	(0,250)	250 θ	tie at A & B when $ heta=2$
В	(100,200)	$100 + 200 \ \theta$	tie at B & C when $\theta = 4/5$
С	(140, 150)	$140 + 150 \ heta$	tie at C & D when $\theta = 2/5$
D	(200,0)	200	

(100, 200) remains optimal for $\frac{4}{5} \le \theta \le 2$ (100,200) maximizes 4.5x + by for all b such that $\$3.60 \le b \le \9.00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Prelude To Sensitivity Analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let's examine objective function row for original and final table of Fromage Problem

	Z	Х	у	u	v	w	
Original	1	-4.5	-4	0	0	0	0
Final	1	0	0	0	5/12	1/12	1250

Look at

$$\begin{bmatrix} \mathbf{0}, \, \mathbf{5}/\mathbf{12}, \, \mathbf{1}/\mathbf{12} \ \end{bmatrix} \begin{bmatrix} 30 & 12 & 1 & 0 & 0 & 6000 \\ 10 & 8 & 0 & 1 & 0 & 2600 \\ 4 & 8 & 0 & 0 & 1 & 2000 \end{bmatrix}$$
$$\mathbf{1} \text{ by } \mathbf{3} \qquad \mathbf{3} \text{ by } \mathbf{6}$$

= [4.5, 4, 0, 5/12, 1/12, 1250]

which is exactly what got added to the original objective function row.

We can express the final Objective Function Row as z - c where z represents what was added: z - c = [0, 5/12, 1/12] A - cand [0, 5/12, 1/12] is the vector of shadow prices.

IDEA: We can reconstruct parts of the final tableau from other parts and from the original data.

Foundations of Revised Simplex Method

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fromage
A,
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 6000 \\ 2600 \\ 2000 \end{pmatrix}$
3 by 2 2 by 1 3 by 1
Augment A with 3 x 3 identity and slack variables $\mathbf{x}_s = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$

$$\begin{bmatrix} A, \mathbb{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{x}_{s} \end{bmatrix} = \mathbf{b}$$

(3 × 5) (5 × 1) = (3 × 1)

 $A \mathbf{x} + \mathbb{I} \mathbf{x}_s = b$ (A system of 3 equations in 5 unknowns)

General Case A, \mathbf{x} **b** *m* by *n n* by 1 *m* by 1

Augment A with $m \times m$ identity matrix I and slack variables \mathbf{x}_s (an $m \times 1$ vector)

$$\begin{bmatrix} A, \mathbb{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{x}_{s} \end{bmatrix} = \mathbf{b}$$
$$(m \times m + n) \ (m + n \times 1) = (m \times 1)$$
$$A \ \mathbf{x} + \mathbb{I} \ \mathbf{x}_{s} = b$$

(A system of *m* equations in m + n unknowns)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

To find a basic solution, pick 2(n) variables to become 0 (nonbasic variables)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Then the system becomes Fromage: 3 equations in 3 unknowns General: *m* equations in *m* unknowns. The coefficient matrix B of this square system of equations comes from eliminating the columns of [A, I] corresponding to the nonbasic variables.

We can write the system as

$$B\mathbf{x}_B = \mathbf{b}$$

where \mathbf{x}_B is the vector of basic variables obtained by eliminating the nonbasic variables from $[x, xs]^T$.

Then the solution is
$$\mathbf{x}_B = B^{-1}\mathbf{b}$$

and the value of the objective function is
 $Z = \mathbf{c}_B \mathbf{x}_B = \mathbf{c}_B (B^{-1}\mathbf{b})$

where \mathbf{c}_B is the vector whose entries are the objective function coefficients for the corresponding elements of \mathbf{x}_B

Pay attention to dimensions: Fromage: B^{-1} is 3×3 , **b** is 3×1 General: B^{-1} is $m \times m$, **b** is $m \times 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Matrix Form of Equations in Initial Tableau:

$$\begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & A & \mathbb{I} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_{s} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}$$

After an iteration, the right hand side of the equation becomes

$$\begin{bmatrix} Z \\ \mathbf{x}_B \end{bmatrix} = \begin{bmatrix} \mathbf{c}_B B^{-1} \mathbf{b} \\ B^{-1} \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}$$

Thus original right hand side was multiplied on the left by

$$\left[\begin{array}{cc} 1 & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} \end{array}\right]$$

so left hand side was also multiplied by this matrix

$$\begin{bmatrix} 1 & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} \end{bmatrix} \begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & A & \mathbb{I} \end{bmatrix}$$

Thus the left hand side has the form

$$\begin{bmatrix} 1 & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} \end{bmatrix} \begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & A & \mathbb{I} \end{bmatrix} = \begin{bmatrix} 1 & -\mathbf{c} + \mathbf{c}_B B^{-1} A & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} A & B^{-1} \end{bmatrix}$$

and the matrix form of the equations of the tableau is

$$\begin{bmatrix} 1 & -\mathbf{c} + \mathbf{c}_B B^{-1} A & \mathbf{c}_B B^{-1} \\ \mathbf{0} & B^{-1} A & B^{-1} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_s \end{bmatrix} = \begin{bmatrix} \mathbf{c}_B B^{-1} \mathbf{b} \\ B^{-1} \mathbf{b} \end{bmatrix}$$

I Know What You Are Thinking

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Thus, if we know the original data (A, c, b) and which variables are in the basis, then we can determine B^{-1} and hence we can construct the entire tableau.

	Original Variables	Slack Variables	
Z-row	${f c}_B B^{-1} A - {f c}$	$\mathbf{c}_B B^{-1}$	$\mathbf{c}_B B^{-1} \mathbf{b}$
Other rows	$B^{-1}A$	B^{-1}	$B^{-1}\mathbf{b}$

Initial Tableau for Fromage Problem

		Ζ	Х	У	u	v	W	
ſ	Ζ	1	-4.5	-4	0	0	0	0
	и	0	30	12	1	0	0	6000
	V	0	10	8	0	1	0	2600
	W	0	4	8	0	0	1	2000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Z-row
Other rowsOriginal Variables
$$\mathbf{c}_B B^{-1} A - \mathbf{c}$$

 $B^{-1} A$ Slack Variables
 $\mathbf{c}_B B^{-1}$ $\mathbf{c}_B B^{-1} \mathbf{b}$ An
 $B^{-1} \mathbf{b}$ Example
Suppose we take x, y, w as basis.

$$B = \begin{bmatrix} 30 & 12 & 0 \\ 10 & 8 & 0 \\ 4 & 8 & 1 \end{bmatrix} \Longrightarrow B^{-1} = \begin{bmatrix} 1/15 & -1/10 & 0 \\ -1/12 & 1/4 & 0 \\ 2/5 & -8/5 & 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Z-rowOriginal VariablesSlack VariablesZ-row
$$\mathbf{c}_B B^{-1} A - \mathbf{c}$$
 $\mathbf{c}_B B^{-1}$ $\mathbf{c}_B B^{-1} \mathbf{b}$ Other rows $B^{-1} A$ B^{-1} $B^{-1} \mathbf{b}$

$$B^{-1}\mathbf{b} = \begin{bmatrix} 1/15 & -1/10 & 0\\ -1/12 & 1/4 & 0\\ 2/5 & -8/5 & 1 \end{bmatrix} \begin{bmatrix} 6000\\ 2600\\ 2000 \end{bmatrix} = \begin{bmatrix} 140\\ 150\\ 240 \end{bmatrix}$$

$$\mathbf{c}_B(B^{-1}\mathbf{b}) = \begin{bmatrix} 9/2 & 4 & 0 \end{bmatrix} \begin{bmatrix} 140 \\ 150 \\ 240 \end{bmatrix} = 630 + 600 + 0 = 1230$$

 $\mathbf{c}_B B^{-1} = \left[egin{array}{ccc} 9/2 & 4 & 0 \end{array}
ight] B^{-1} = \left[egin{array}{ccc} -1/30 & 11/20 & 0 \end{array}
ight]$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Z-rowOriginal VariablesSlack VariablesCBB^{-1}A - c
$$c_BB^{-1}$$
 $c_BB^{-1}b$ Other rows $B^{-1}A$ B^{-1}

$$B^{-1}\mathbf{b} = \begin{bmatrix} 140\\ 150\\ 240 \end{bmatrix}, \mathbf{c}_B(B^{-1}\mathbf{b}) = 1230, \mathbf{c}_B B^{-1} = \begin{bmatrix} -\frac{1}{30} & \frac{11}{20} & 0 \end{bmatrix}$$

$$B^{-1}A = \begin{bmatrix} 1/15 & -1/10 & 0 \\ -1/12 & 1/4 & 0 \\ 2/5 & -8/5 & 1 \end{bmatrix} \begin{bmatrix} 30 & 12 \\ 10 & 8 \\ 4 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$\mathbf{c}_B B^{-1}A - \mathbf{c} = \begin{bmatrix} 9 \\ 2 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 9 \\ 2 & 4 \end{bmatrix} - \begin{bmatrix} 9 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

Z-rowOriginal VariablesSlack VariablesCBB^{-1}A - c
$$c_BB^{-1}$$
 $c_BB^{-1}b$ Other rows $B^{-1}A$ B^{-1}

$$B^{-1}\mathbf{b} = \begin{bmatrix} 140\\ 150\\ 240 \end{bmatrix}, \mathbf{c}_B(B^{-1}\mathbf{b}) = 1230, \mathbf{c}_BB^{-1} = \begin{bmatrix} -\frac{1}{30} & \frac{11}{20} & 0 \end{bmatrix}$$

$$B^{-1}A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{c}_B B^{-1}A - \mathbf{c} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & -1/30 & 11/20 & 0 & 1230 \\ \hline 1 & 0 & 1/15 & -1/10 & 0 & 140 \\ 0 & 1 & -1/12 & 1/4 & 0 & 150 \\ 0 & 0 & 2/5 & -8/5 & 1 & 240 \end{bmatrix}$$

シック 単 (中本)(中本)(日)(日)

Exercise: Do Example with x, v, w as the basis

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Dual Problem
Minimize $6000C + 2600S + 2000B$
subject to
$30C + 10S + 4B \ge 4.5$
$12C + 8S + 8B \ge 4$
$C,S,B\geq 0$

Primal Problem	Dual Problem
Maximize $Z = c\mathbf{x}$	Minimize $W = \mathbf{y}\mathbf{b}$
subject to	subject to
$A\mathbf{x} \leq \mathbf{b}$	y A ≥ <i>c</i>
and $\mathbf{x} \ge 0$	and $\mathbf{y} \ge 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Primal Problem	Dual Problem
i iiiiai i iobieiii	Duai TTODIEIII
NA · · ·	NA: · · · · · · · · · · · · · · · · · · ·
Maximize $Z = CX$	$V_{V} = V_{D}$
	,
subject to	subject to
Subject to	Subject to
Ax < b	$\lambda \Lambda > c$
$Ax \geq D$	y A <u>∠</u> C
and $x \ge 0$	and $v \geq 0$.

Alternative 1 for Dual	Alternative 2 for Dual
$\begin{array}{l} \text{Minimize } W = \mathbf{b}^T \mathbf{w} \\ \text{subject to} \\ A^T \mathbf{w} \ge \mathbf{c}^T \end{array}$	$\begin{array}{l} Maximize \ \ \mathcal{W} = -\mathbf{b}^T \mathbf{w} \\ \text{subject to} \\ -\mathcal{A}^T \mathbf{w} \leq -\mathbf{c}^T \end{array}$
and $\mathbf{w} \geq 0$	and $\mathbf{w} \ge 0$.
w : column vector	w : column vector

Announcements

Median: 89 Average: 87.6

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Announcements

Your exam results do not define you as a person and/or predict your future!

Laura Henry

・ロト ・四ト ・ヨト ・ヨト

æ