Another Way to Look at Duality; Parametric Programming And Prelude to Sensitivity Analysis

Class 15

Friday, March 17, 2023

Handouts

Notes on Exam 1 Assignment 6 Sensible Rules for Remembering Duals:
 The S-O-B Method

Another Way To Look At Duality

Consider Dual to Fromage Cheese Company Problem Minimize $6000 C+2600 S+2000 B$ subject to

$$
\begin{gathered}
30 C+10 S+4 B \geq 4.5 \\
12 C+8 S+8 B \geq 4 \\
C, S, B \geq 0
\end{gathered}
$$

Let C, S, B be any feasible solution.
Multiply the first constraint by 150 and the second by 100 :

$$
4500 C+1500 S+600 B \geq 675
$$

$$
1200 C+800 S+800 B \geq 400
$$

Add the constraints
$5700 C+2300 S+1400 B \geq 1175$.
But $6000 C+2600 S+2000 B>5700 C+2300 S+1400 B \geq 1075$

We want to find the best multipliers $x, y \geq 0$ such that $x(30 C+10 S+4 B) \geq 4.5 x$ and $y(12 C+8 S+8 B) \geq 4 y$ so that $(30 x+12 y) C+(10 x+8 y) S+(4 x+8 y) B \geq 4.5 x+4 y$ is as large as possible and
$6000 C+2600 S+2000 B) \geq(30 x+12 y) C+(10 x+8 y) S+(4 x+8 y) B$
Comparing coefficients of C, S, B indicates $6000 \geq 30 x+12 y, 2600 \geq 10 x+8 y, 2000 \geq 4 x+8 y$.

Introduction

 ToParametric Programming and
Sensitivity Analysis

As Usual, a Cheesy Start

Fromage Cheese Problem	Dual Problem
Maximize $4.5 x+4 y$	Minimize $6000 C+2600 S+2000 B$
subject to	
$30 x+12 y \leq 6000$ (Cheddar)	
$10 x+8 y \leq 2600$ (Swiss)	
$4 x+8 y \leq 2000$ (Brie)	$30 C+10 S+4 B \geq 4.5$
$x, y \geq 0$	$12 C+8 S+8 B \geq 4$
x and y are number of packages of each assortment to prepare	C, S, B are the price per ounce to offer for the cheeses

Consider the Revenue Function:
$M=4.5 x+4 y=4.5\left(x+\frac{4}{4.5} y\right)$

Change in Relative Prices Charged

Revenue Function: $M=4.5 x+4 y=4.5\left(x+\frac{4}{4.5} y\right)=$ $M=4.5(x+\theta y)$

Vertex	Coordinates	$M=x+\theta y$	
O	$(0,0)$	0	
A	$(0,250)$	250θ	tie at A \& B when $\theta=2$
B	$(100,200)$	$100+200 \theta$	tie at B \& C when $\theta=4 / 5$
C	$(140,150)$	$140+150 \theta$	tie at C \& D when $\theta=2 / 5$
D	$(200,0)$	200	

$(100,200)$ remains optimal for $\frac{4}{5} \leq \theta \leq 2$
$(100,200)$ maximizes $4.5 x+$ by for all b such that $\$ 3.60 \leq b \leq \$ 9.00$

Prelude

To

Sensitivity Analysis

Let's examine objective function row for original and final table of Fromage Problem

	Z	x	y	u	v	w	
Original	1	-4.5	-4	0	0	0	0
Final	1	0	0	0	$5 / 12$	$1 / 12$	1250

Look at

$$
\begin{gathered}
{[0,5 / 12,1 / 12]\left[\begin{array}{cccccc}
30 & 12 & 1 & 0 & 0 & 6000 \\
10 & 8 & 0 & 1 & 0 & 2600 \\
4 & 8 & 0 & 0 & 1 & 2000
\end{array}\right]} \\
1 \text { by } 3 \\
=[4.5,4,0,5 / 12,1 / 12,1250]
\end{gathered}
$$

which is exactly what got added to the original objective function row.

We can express the final Objective Function Row as $\mathbf{z}-\mathbf{c}$ where \mathbf{z} represents what was added:

$$
\mathbf{z}-\mathbf{c}=[0,5 / 12,1 / 12] \mathrm{A}-\mathbf{c}
$$

and $[0,5 / 12,1 / 12]$ is the vector of shadow prices.
IDEA: We can reconstruct parts of the final tableau from other parts and from the original data.

Foundations of Revised Simplex Method

Fromage

$$
\begin{gathered}
\text { A, } \quad \mathbf{x}=\binom{x_{1}}{x_{2}}, \quad \mathbf{b}=\left(\begin{array}{l}
6000 \\
2600 \\
2000
\end{array}\right) \\
3 \text { by } 2 \quad 2 \text { by } 1
\end{gathered}
$$

Augment A with 3×3 identity and slack variables $\mathbf{x}_{s}=\left(\begin{array}{c}u \\ v \\ w\end{array}\right)$

$$
\begin{gathered}
{[A, \mathbb{I}]\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{x}_{\mathbf{s}}
\end{array}\right]=\mathbf{b}} \\
(3 \times 5)(5 \times 1)=(3 \times 1)
\end{gathered}
$$

$$
A \mathbf{x}+\mathbb{I} \mathbf{x}_{s}=b
$$

(A system of 3 equations in 5 unknowns)

$$
\begin{aligned}
& \text { General Case } \\
& \text { A, } \quad \mathbf{x} \quad \mathbf{b} \\
& m \text { by } n \quad n \text { by } 1 \quad m \text { by } 1
\end{aligned}
$$

Augment A with $m \times m$ identity matrix \mathbb{I} and slack variables \mathbf{x}_{s} (an $m \times 1$ vector)

$$
\begin{gathered}
{[A, \mathbb{I}]\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{x}_{s}
\end{array}\right]=\mathbf{b}} \\
(m \times m+n)(m+n \times 1)=(m \times 1) \\
A \mathbf{x}+\mathbb{I} \mathbf{x}_{s}=b
\end{gathered}
$$

(A system of m equations in $m+n$ unknowns)

To find a basic solution, pick $2(n)$ variables to become 0 (nonbasic variables)

Then the system becomes
Fromage: 3 equations in 3 unknowns
General: m equations in m unknowns.

The coefficient matrix B of this square system of equations comes from eliminating the columns of $[A, I]$ corresponding to the nonbasic variables.
We can write the system as

$$
B \mathbf{x}_{B}=\mathbf{b}
$$

where \mathbf{x}_{B} is the vector of basic variables obtained by eliminating the nonbasic variables from $[x, x s]^{T}$.

Then the solution is $\mathbf{x}_{B}=B^{-1} \mathbf{b}$
and the value of the objective function is

$$
Z=\mathbf{c}_{B} \mathbf{x}_{B}=\mathbf{c}_{B}\left(B^{-1} \mathbf{b}\right)
$$

where \mathbf{c}_{B} is the vector whose entries are the objective function coefficients for the corresponding elements of \mathbf{x}_{B}

Pay attention to dimensions:
Fromage: B^{-1} is $3 \times 3, \mathbf{b}$ is 3×1
General: B^{-1} is $m \times m, \mathbf{b}$ is $m \times 1$.

The Matrix Form of Equations in Initial Tableau:

$$
\left[\begin{array}{ccc}
1 & -\mathbf{c} & \mathbf{0} \\
\mathbf{0} & A & \mathbb{I}
\end{array}\right]\left[\begin{array}{l}
Z \\
\mathbf{x} \\
\mathbf{x}_{s}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathbf{b}
\end{array}\right]
$$

After an iteration, the right hand side of the equation becomes

$$
\left[\begin{array}{c}
Z \\
\mathbf{x}_{B}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{c}_{B} B^{-1} \mathbf{b} \\
B^{-1} \mathbf{b}
\end{array}\right]=\left[\begin{array}{cc}
1 & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1}
\end{array}\right]\left[\begin{array}{l}
0 \\
\mathbf{b}
\end{array}\right]
$$

Thus original right hand side was multiplied on the left by

$$
\left[\begin{array}{cc}
1 & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1}
\end{array}\right]
$$

so left hand side was also multiplied by this matrix

$$
\left[\begin{array}{cc}
1 & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1}
\end{array}\right]\left[\begin{array}{ccc}
1 & -\mathbf{c} & \mathbf{0} \\
\mathbf{0} & A & \mathbb{I}
\end{array}\right]
$$

Thus the left hand side has the form

$$
\left[\begin{array}{cc}
1 & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1}
\end{array}\right]\left[\begin{array}{ccc}
1 & -\mathbf{c} & \mathbf{0} \\
\mathbf{0} & A & \mathbb{I}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -\mathbf{c}+\mathbf{c}_{B} B^{-1} A & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1} A & B^{-1}
\end{array}\right]
$$

and the matrix form of the equations of the tableau is

$$
\left[\begin{array}{ccc}
1 & -\mathbf{c}+\mathbf{c}_{B} B^{-1} A & \mathbf{c}_{B} B^{-1} \\
\mathbf{0} & B^{-1} A & B^{-1}
\end{array}\right]\left[\begin{array}{c}
Z \\
\mathbf{x} \\
\mathbf{x}_{s}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{c}_{B} B^{-1} \mathbf{b} \\
B^{-1} \mathbf{b}
\end{array}\right]
$$

I Know What You Are Thinking

Thus, if we know the original data ($\mathrm{A}, \mathbf{c}, \mathbf{b}$) and which variables are in the basis, then we can determine B^{-1} and hence we can construct the entire tableau.

	Original Variables	Slack Variables	
Z-row	$\mathbf{c}_{B} B^{-1} A-\mathbf{c}$	$\mathbf{c}_{B} B^{-1}$	$\mathbf{c}_{B} B^{-1} \mathbf{b}$
Other rows	$B^{-1} A$	B^{-1}	$B^{-1} \mathbf{b}$

Initial Tableau for Fromage Problem

	Z	x	y	u	v	w	
Z	1	-4.5	-4	0	0	0	0
u	0	30	12	1	0	0	6000
v	0	10	8	0	1	0	2600
w	0	4	8	0	0	1	2000

	Original Variables	Slack Variables	
Z-row	$\mathbf{c}_{B} B^{-1} A-\mathbf{c}$	$\mathbf{c}_{B} B^{-1}$	$\mathbf{c}_{B} B^{-1} \mathbf{b}$
Other rows	$B^{-1} A$	B^{-1}	$B^{-1} \mathbf{b}$

Example
Suppose we take x, y, w as basis.

$$
B=\left[\begin{array}{ccc}
30 & 12 & 0 \\
10 & 8 & 0 \\
4 & 8 & 1
\end{array}\right] \Longrightarrow B^{-1}=\left[\begin{array}{ccc}
1 / 15 & -1 / 10 & 0 \\
-1 / 12 & 1 / 4 & 0 \\
2 / 5 & -8 / 5 & 1
\end{array}\right]
$$

$$
\begin{array}{c|cc|c}
& \text { Original Variables } & \text { Slack Variables } & \\
\text { Z-row } & \mathbf{c}_{B} B^{-1} A-\mathbf{c} & \mathbf{c}_{B} B^{-1} & \mathbf{c}_{B} B^{-1} \mathbf{b} \\
\text { Other rows } & B^{-1} A & B^{-1} & B^{-1} \mathbf{b}
\end{array}
$$

$$
\begin{aligned}
B^{-1} \mathbf{b} & =\left[\begin{array}{ccc}
1 / 15 & -1 / 10 & 0 \\
-1 / 12 & 1 / 4 & 0 \\
2 / 5 & -8 / 5 & 1
\end{array}\right]\left[\begin{array}{l}
6000 \\
2600 \\
2000
\end{array}\right]=\left[\begin{array}{l}
140 \\
150 \\
240
\end{array}\right] \\
\mathbf{c}_{B}\left(B^{-1} \mathbf{b}\right) & =\left[\begin{array}{lll}
9 / 2 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
140 \\
150 \\
240
\end{array}\right]=630+600+0=1230 \\
\mathbf{c}_{B} B^{-1} & =\left[\begin{array}{lll}
9 / 2 & 4 & 0
\end{array}\right] B^{-1}=\left[\begin{array}{lll}
-1 / 30 & 11 / 20 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{c|cc|c}
& \text { Original Variables } & \text { Slack Variables } & \\
\text { Z-row } & \mathbf{c}_{B} B^{-1} A-\mathbf{c} & \mathbf{c}_{B} B^{-1} & \mathbf{c}_{B} B^{-1} \mathbf{b} \\
\text { Other rows } & B^{-1} A & B^{-1} & B^{-1} \mathbf{b}
\end{array}
$$

$$
B^{-1} \mathbf{b}=\left[\begin{array}{l}
140 \\
150 \\
240
\end{array}\right], \mathbf{c}_{B}\left(B^{-1} \mathbf{b}\right)=1230, \mathbf{c}_{B} B^{-1}=\left[\begin{array}{lll}
-\frac{1}{30} & \frac{11}{20} & 0
\end{array}\right]
$$

$$
B^{-1} A=\left[\begin{array}{ccc}
1 / 15 & -1 / 10 & 0 \\
-1 / 12 & 1 / 4 & 0 \\
2 / 5 & -8 / 5 & 1
\end{array}\right]\left[\begin{array}{cc}
30 & 12 \\
10 & 8 \\
4 & 8
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

$$
\mathbf{c}_{B} B^{-1} A-\mathbf{c}=\left[\begin{array}{lll}
\frac{9}{2} & 4 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
\frac{9}{2} & 4
\end{array}\right]-\left[\begin{array}{ll}
\frac{9}{2} & 4
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
$$

	Original Variables	Slack Variables	
Z-row	$\mathbf{c}_{B} B^{-1} A-\mathbf{c}$	$\mathbf{c}_{B} B^{-1}$	$\mathbf{c}_{B} B^{-1} \mathbf{b}$
Other rows	$B^{-1} A$	B^{-1}	$B^{-1} \mathbf{b}$

$$
B^{-1} \mathbf{b}=\left[\begin{array}{l}
140 \\
150 \\
240
\end{array}\right], \mathbf{c}_{B}\left(B^{-1} \mathbf{b}\right)=1230, \mathbf{c}_{B} B^{-1}=\left[\begin{array}{lll}
-\frac{1}{30} & \frac{11}{20} & 0
\end{array}\right]
$$

$$
\begin{aligned}
& B^{-1} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \mathbf{c}_{B} B^{-1} A-\mathbf{c}=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
& {\left[\begin{array}{cc|ccc|c}
0 & 0 & -1 / 30 & 11 / 20 & 0 & 1230 \\
\hline 1 & 0 & 1 / 15 & -1 / 10 & 0 & 140 \\
0 & 1 & -1 / 12 & 1 / 4 & 0 & 150 \\
0 & 0 & 2 / 5 & -8 / 5 & 1 & 240
\end{array}\right]}
\end{aligned}
$$

Exercise: Do Example with x, v, w as the basis

Fromage Cheese Problem	Dual Problem
Maximize $4.5 x+4 y$	Minimize $6000 C+2600 S+2000 B$
subject to	subject to
$30 x+12 y \leq 6000$ (Cheddar)	$30 C+10 S+4 B \geq 4.5$
$10 x+8 y \leq 2600$ (Swiss)	$12 C+8 S+8 B \geq 4$
$4 x+8 y \leq 2000$ (Brie)	
$x, y \geq 0$	$C, S, B \geq 0$

Dimensions: $\quad \mathbf{x}: 2 \times 1, \mathbf{y}: 1 \times 3, A: 3 \times 2, \mathbf{c}: 1 \times 2, \mathbf{b}: 3 \times 1$. General: $\quad \mathbf{x}: n \times 1, \mathbf{y}: 1 \times m, A: m \times n, \mathbf{c}: 1 \times n, \mathbf{b}: m \times 1$.

Primal Problem	Dual Problem
Maximize $Z=c \mathbf{x}$	Minimize $W=\mathbf{y} b$
subject to	subject to
$A \mathbf{x} \leq b$	$\mathbf{y} A \geq c$
and $\mathbf{x} \geq 0$	and $\mathbf{y} \geq 0$.

Primal Problem	Dual Problem
Maximize $Z=c x$	Minimize $W=y b$
subject to	subject to
$A x \leq b$	$y A \geq c$
and $x \geq 0$	and $y \geq 0$.

Alternative 1 for Dual	Alternative 2 for Dual
Minimize $W=\mathbf{b}^{T} \mathbf{w}$	Maximize $W=-\mathbf{b}^{T} \mathbf{w}$
subject to	subject to
$A^{T} \mathbf{w} \geq \mathbf{c}^{T}$	$-A^{T} \mathbf{w} \leq-\mathbf{c}^{T}$
and $\mathbf{w} \geq 0$	and $\mathbf{w} \geq 0$.
\mathbf{w} : column vector	\mathbf{w} : column vector

Announcements

Median: 89
Average: 87.6

Announcements

> Your exam results do not define you as a person and/or predict your future!
> Luvren Heny

