

Class 13

March 13, 2023

Handouts

Introduction To Duality Notes on Problem Set 4

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Exam 1: Wednesday at 7 PM Warner 101

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Exam 1 Details

No Time Limit Show All Work Double Check Your Answers Justify Claims Closed Book No Calculator

Fundamental Insight: Green Numbers Record Row Operations

	Z	Х					
Ζ	1	-4.5	-4	0	0	0	0
и	0	30	12	1	0	0	6000
V	0	10	8	0	1	0	2600
W	0	4	8	0	0	1	2000

$$(0, \frac{5}{12}, \frac{1}{12}) \cdot (6000, 2600, 2000) = \frac{0+13000+2000}{12} = \frac{15000}{12} = 1250$$
$$\begin{pmatrix} 0 & 1/6 & -1/6 \\ 0 & -1/12 & 5/24 \\ 1 & -4 & 5/2 \end{pmatrix} \begin{pmatrix} 6000 \\ 2600 \\ 2000 \end{pmatrix} = \begin{pmatrix} 100 \\ 200 \\ 600 \end{pmatrix}$$
$$\begin{pmatrix} 0 & \frac{5}{12} & \frac{1}{12} \\ 0 & 1/6 & -1/6 \\ 0 & -1/12 & 5/24 \\ 1 & -4 & 5/2 \end{pmatrix} \begin{pmatrix} C \\ S \\ B \end{pmatrix} = \begin{pmatrix} \frac{5}{12}S + \frac{1}{12}B \\ \frac{5-B}{6} \\ \frac{1}{12}S + \frac{5}{24}B \\ C - 4S + \frac{5}{2}B \end{pmatrix}$$

シック 単 (中本)(中本)(日)(日)

Introduction To Duality Part II

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dual Problem Minimize 6000C + 2600S + 2000Bsubject to $30C + 10S + 4B \ge 4.5$ $12C + 8S + 8B \ge 4$

 $C, S, B \geq 0$

C, S, B are the price per ounce to offer for the cheeses

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dual Problem
Minimize $6000C + 2600S + 2000B$
subject to
$30C + 10S + 4B \ge 4.5$
$12C + 8S + 8B \ge 4$
$C,S,B\geq 0$

Primal Problem	Dual Problem
Maximize $Z = c\mathbf{x}$	Minimize $W = \mathbf{y}\mathbf{b}$
subject to	subject to
$A\mathbf{x} \leq \mathbf{b}$	y A ≥ <i>c</i>
and $\mathbf{x} \ge 0$	and $\mathbf{y} \ge 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Primal Problem	Dual Problem
Maximize $Z = \mathbf{cx}$	Minimize $W = \mathbf{y}\mathbf{b}$
subject to	subject to
$A\mathbf{x} \leq \mathbf{b}$	y A ≥ <i>c</i>
and $\mathbf{x} \ge 0$	and $\mathbf{y} \ge 0$.

Note: If you like to write decision variables (unknowns) on the right, then you can write $A^T \mathbf{y}^T \ge \mathbf{c}^T$ instead of $\mathbf{y}A \ge \mathbf{c}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Primal Problem	Dual Problem
i illiai i iobicili	Duarriobiciii
Maximize $Z = cx$	Minimize $VV = yb$
subject to	subject to
	A >
$Ax \leq b$	yA ≥ c
and $x > 0$	and $y > 0$
and $x \ge 0$	and $y \ge 0$.

Alternative 1 for Dual	Alternative 2 for Dual
Minimize $W = \mathbf{b}^T \mathbf{w}$	Maximize $W = -\mathbf{b}^T \mathbf{w}$
$A^T \mathbf{w} \ge \mathbf{c}^T$	$-A^T \mathbf{w} \leq -\mathbf{c}^T$
and $\mathbf{w} \geq 0$	and $\mathbf{w} \ge 0$.
w : column vector	w : column vector

Theorem: The dual of the dual is the primal.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Dual of the Dual is the Primal

Primal	Alternative 2 for Dual
Maximize $Z = \mathbf{c}\mathbf{x}$ subject to $A\mathbf{x} < \mathbf{b}^T$	Maximize $W = -\mathbf{b}^T \mathbf{w}$ subject to $-A^T \mathbf{w} < -\mathbf{c}^T$
and $\mathbf{x} \ge 0$	and $\mathbf{w} \ge 0$.
x . column vector	

Maximize
$$V = -(-\mathbf{c}^T)^T \mathbf{u}$$

subject to
 $-(-A^T)^T \mathbf{u} \le -(-\mathbf{b}^T)^T$
and $\mathbf{u} \ge 0$

シック 単 (中本)(中本)(日)(日)

Weak Duality Theorem

If **x** is a feasible solution to the primal problem and **y** is a feasible solution of the dual problem, then $\mathbf{cx} \leq \mathbf{yb}$.

Weak Duality Theorem

If **x** is a feasible solution to the primal problem and **y** is a feasible solution of the dual problem, then $\mathbf{cx} \leq \mathbf{yb}$.

- Corollary 1: Any feasible solution of the dual gives a bound for the primal.
- Corollary 2: Any feasible solution of the primal gives a bound for the dual.
- Corollary 3: If the primal is unbounded, then the dual is infeasible.
- Corollary 4: If primal and dual both have feasible solutions, then both have optimal solutions.
- Corollary 5: Suppose x is feasible for primal and y is feasible for dual. If cx = yb, then x and y are optimal solutions.

Srong Duality Theorem

Strong Duality Property If **x**^{*} is an optimal solution for the primal problem and **y*** is an optimal solution for the dual problem, then $\mathbf{cx^*} = \mathbf{yb^*}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complementary Solutions Property

At each iteration, the simplex method simultaneously identifies a CPF solution \mathbf{x} for the primal problem and a complementary solution \mathbf{y} for the dual problem (in objective function row as the coefficients of the slack variables) where $\mathbf{cx} = \mathbf{yb}$. If \mathbf{x} is not optimal for the primary problem, then **y** is not feasible for the dual problem.

Complementary Optimal Solutions Property

Complementary Optimal Solutions Property: At the final iteration, the simplex method simultaneously identifies an optimal solution \mathbf{x}^* for the primal problem and a complementary optimal solution \mathbf{y}^* for the dual problem where $\mathbf{c}\mathbf{x}^* = \mathbf{y}^*\mathbf{b}$. The components of \mathbf{y} are the shadow prices for the primal problem

Symmetry Property

Symmetry Property: For any primal problem and its dual problem, all relationships between them must be symmetric because the dual of this dual problem is the primal problem.

Duality Theorem

The following are the only possible relationships between the primal and dual problems:

- If one problem has feasible solutions and a bounded objective function (and therefore has an optimal solution), then so does the other problem, so both the weak and strong duality properties are applicable.
- If one problem has feasible solutions and an unbounded objective function (and hence no optimal solution), then the other problem has no feasible solutions.
- If one problem has no feasible solutions, then the other problem has no feasible solutions or an unbounded objective function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fromage Cheese Company

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Initial Tableau for P										
	Z	x_1	<i>x</i> ₂	u	v	W				
Ζ	1	-4.5	-4	0	0	0	0			
u	0	30	12	1	0	0	6000			
v	0	10	8	0	1	0	2600			
w	0	4	8	0	0	1	2000			

 $\begin{array}{l} \mbox{Constraints for Primal:} \\ 30(0) + 12(0) = 0 \leq 6000 \\ 10(0) + 8(0) = 0 \leq 2600 \\ 4(0) + 8(0) = 0 \leq 2000 \end{array}$

Solution for Dual is $y_1 = 0, y_2 = 0, y_3 = 0$

Value of Objective function is 6000(0) + 2600(0) + 2000(0) = 0

Nonnegativity is satisfied.

Neither constraint of dual is satisfied: $30(0) + 10(0) + 4(0) = 0 < 4.5 \text{ (need } \geq)$ $12(0) + 8(0) + 8(0) = 0 < 4 \text{ (need } \geq)$

After First Iteration:

	Ζ	<i>x</i> ₁	<i>x</i> ₂	u	v	W	
Ζ	1	0	-11/5	3/20	0	0	900
<i>x</i> ₁	0	1	2/5	1/30	0	0	200
v	0	0	4	-1/3	1	0	600
w	0	0	32/5	-2/15	0	1	1200

Constraints for Primal:

$$\begin{array}{l} 30(200) + 12(0) = 6000 \leq 6000 \mbox{ (tight)} \\ 10(200) + 8(0) = 2000 \leq 2600 \\ 4(200) + 8(0) = 800 \leq 2000 \\ \mbox{Solution for Dual is } y_1 = 3/20, y_2 = 0, y_3 = 0 \\ \mbox{Objective function's value:} 6000(3/20) + 2600(0) + 2000(0) = 900 \\ \mbox{Nonnegativity is satisfied.} \end{array}$$

Second constraint is not satisfied: $30(3/20) + 10(0) + 4(0) = 9/2 = 4.5 \text{ (need } \geq)$ $12(3/20) + 8(0) + 8(0) = 9/5 = 1.8 < 4 \text{ (need } \geq)$

< ロ > < 団 > < 芝 > < 芝 > 、 芝 > のへの

After Second Iteration:

	Z	x_1	<i>x</i> ₂	u	v	W	
Ζ	1	0	0	-1/30	11/20	0	1230
<i>x</i> ₁	0	1	0	1/15	-1/10	0	140
<i>x</i> ₂	0	0	1	-1/12	1/4	0	150
w	0	0	0	2/5	-8/3	1	240

Constraints for Primal: 30(140) + 12(150) = 4200 + 1800 = 6000 (tight) 10(140) + 8(150) = 1400 + 1200 = 2600 (tight) $4(140) + 8(150) = 560 + 1200 = 1760 \le 2000$ Solution for Dual is $y_1 = -1/30$, $y_2 = 11/20$, $y_3 = 0$ Value of Objective function is 6000(-1/30) + 2600(11/20) + 2000(0) = -200 + 1430 = 1230. **Nonnegativity is not satisfied.** Other constraints are satisfied:

$$30(-1/30) + 10(11/20) + 4(0) = 9/2 = 4.5 \text{ (need } \ge)$$

 $12((-1/30) + 8(11/20) + 8(0) = 20/5 = 4 \text{ (need } \ge)$

After Third Iteration

	Z	x_1	<i>x</i> ₂	u	v	W	
Ζ	1	0	0	0	5/12	1/12	1250
<i>x</i> ₁	0	1	0	0	1/6	-1/6	100
<i>x</i> ₂	0	0	1	0	-1/12	5/24	200
u	0	0	0	1	-4	5/2	600

Constraints for Primal:

30(100) + 12(200) = 3000 + 2400 = 5400 < 600010(100) + 8(200) = 1000 + 1600 = 2600 (tight) 4(100) + 8(200) = 400 + 1600 = 2000 (tight)

Solution for Dual is $y_1 = 0$, $y_2 = 5/12$, $y_3 = 1/12$ Value of Objective function is 6000(0) + 2600(5/12) + 2000(1/12) = 1250

Nonnegativity is satisfied.

Other constraints are satisfied:

$$30(0) + 10(5/12) + 4(1/12) = 54/12 = 9/2 = 4.5 \text{ (need } \geq \text{)}$$

 $12((0) + 8(5/12) + 8(1/12) = 48/12 = 4 \text{ (need } \geq \text{)}$

$$12((0) + 8(5/12) + 8(1/12) = 48/12 = 4 \text{ (need } \ge \text{)}$$

Complementary Slackness Property

Tight or binding constraints (scarce goods) have positive shadow

Shadow Prices

At each iteration the value of the objective function is given by

$$Z = \mathbf{cx} = \mathbf{yb} = b_1 y_1 + b_2 y_2 + .. + b_m y_m$$

We can interpret $y_i b_i$ as the current contribution to the objective function by having b_i units of resource *i* available for the primal.

Thus y_i is the contribution to objective function per unit of resource *i* when current set of basic variables is used to obtain the primal solution.

Final Tableaux

	Z	х	у	u	v	w	
Ζ	1	0	0	0	5/12	1/12	1250
x	0	1	0	0	1/6	-1/6	100
y	0	0	1	0	-1/12	5/24	200
u	0	0	0	1	-4	5/2	600

Tableau for the Optimal Basic Feasible Solution of Primal

Tableau for the Optimal Basic Feasible Solution of the Dual

	Z	Ċ	S	В	S1	S2	
Ζ	1	600	0	0	100	200	-1250
S	0	4	1	0	-1/6	1/12	5/12
В	0	-5/2	0	1	1/6	-5/24	1/12

Fundamental Insight: Green Numbers Record Row Operations

	Z	Х	У	u	V	W	
Ζ	1	-4.5	-4	0	0	0	0
и	0	30	12	1	0	0	6000
V	0	10	8	0	1	0	2600
W	0	4	8	0	0	1	2000

$$(0, \frac{5}{12}, \frac{1}{12}) \cdot (6000, 2600, 2000) = \frac{0+13000+2000}{12} = \frac{15000}{12} = 1250$$
$$\begin{pmatrix} 0 & 1/6 & -1/6 \\ 0 & -1/12 & 5/24 \\ 1 & -4 & 5/2 \end{pmatrix} \begin{pmatrix} 6000 \\ 2600 \\ 2000 \end{pmatrix} = \begin{pmatrix} 100 \\ 200 \\ 600 \end{pmatrix}$$
$$\begin{pmatrix} 0 & \frac{5}{12} & \frac{1}{12} \\ 0 & 1/6 & -1/6 \\ 0 & -1/12 & 5/24 \\ 1 & -4 & 5/2 \end{pmatrix} \begin{pmatrix} C \\ S \\ B \end{pmatrix} = \begin{pmatrix} \frac{5}{12}S + \frac{1}{12}B \\ \frac{5-B}{6} \\ \frac{1}{12}S + \frac{5}{24}B \\ C - 4S + \frac{5}{2}B \end{pmatrix}$$

シック 単 (中本)(中本)(日)(日)

Another Way To Look at Duality

Fromage Cheese Problem Maximize Z = 4.5x + 4ysubject to $30x + 12y \le 6000$ (Cheddar) $10x + 8y \le 2600$ (Swiss) $4x + 8y \le 2000$ (Brie) $x, y \ge 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose we want to find an upper bound for Z Multiply Cheddar constraint by $\frac{1}{6}: 5x + 2y \le 1000$ Multiply Brie constraint by $\frac{1}{4}: x + 2y \le 500$ Now Add: $6x + 4y \le 1500$ Then $Z = 4.5x + 4y \le 6x + 4y \le 1500$

Is there a **best** set of multipliers (C,S,B)?

Best Multipliers for Best Upper Bound

```
We want non-negative numbers C, S, B so that

30Cx + 12Cy \le 6000C

10Sx + 8Sy \le 2600S

4Bx + 8By \le 2000B

Add:

(30C + 10S + 4B)x + (12C + 8S + 8B)y \le 6000C + 2600S + 2000B
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

```
We need:

4.5x \le (30C + 10S + 4B)x

4y \le (12C + 8S + 8B)y

and

6000C + 2600S + 2000B as small as possible.
```