The Penultimate Class

Class 35

May 12, 2023

Handouts

Notes on Assignment 11

Vogel's Method
Notes on Project 2

Final Examination Thursday May 18 9 AM - Noon

Course Response Forms Monday
Bring Laptop/Smart Phone

An Unbalanced Transportation Problem

Vogel's Method and Unbalanced Transportation Problem

	W1	W2	W3	Supply
F1	2	$\mathbf{1}$	3	200
F2	2	2	4	100
F3	$\mathbf{1}$	4	3	400
Demand	150	120	300	

Table 1: Original Data. F1, F2, F3 are Factories while W1, W2, W3 are the warehouses.
Red Numbers are shipping costs per truckload.
Here Supply (700) exceeds Demand (570) by 130

An Unbalanced Transportation Problem

Vogel's Method and Unbalanced Transportation Problem

	W1	W2	W3	Supply
F1	2	1	3	200
F2	2	2	4	100
F3	1	4	3	400
Demand	150	120	300	

Table 1: Original Data. F1, F2, F3 are Factories while W1, W2, W3 are the warehouses.
Red Numbers are shipping costs per truckload.
Here Supply (700) exceeds Demand (570) by 130
NORTHWEST CORNER RULE

	W1		W2			W3		W4	Supply
F1	$\mathbf{2}$	$\mathbf{1 5 0}$	$\mathbf{1}$	$\mathbf{5 0}$	$\mathbf{3}$		$\mathbf{0}$		200
F2	$\mathbf{2}$		$\mathbf{2}$	$\mathbf{7 0}$	$\mathbf{4}$	$\mathbf{3 0}$	$\mathbf{0}$	100	
F3	$\mathbf{1}$	4		$\mathbf{3}$	$\mathbf{2 7 0}$	$\mathbf{0}$	$\mathbf{1 3 0}$	400	
Demand	150			120		300	130		

TOTAL COST: 1420

Northwest Corner Rule produces a basic feasible solution with objective function value 1420 .

Vogel's Method produces one with value 1170.

Vogel's Method and Unbalanced Transportation Problem

	W1	W2	W3	Supply
F1	2	1	3	200
F2	2	2	4	100
F3	1	4	3	400
Demand	150	120	300	

Table 1: Original Data. F1, F2, F3 are Factories while W1, W2, W3 are the warehouses.
Red Numbers are shipping costs per truckload.
Here Supply (700) exceeds Demand (570) by 130

	W1	W2	W3	W4	Supply
F1	2	1	3	0	200
F2	2	2	4	0	100
F3	1	4	3	0	400
Demand	150	120	300	130	

Table 2: We create an artificial warehouse (W4) with demand =130 so we now have a Balanced Transportation Problem.
We will illustrate Vogel's Method of obtaining initial basic feasible solution

	W1	W2	W3	W4	Supply	Penalty
F1	2	1	3	0	200	1
F2	2	2	4	0	100	2
F3	1	4	3	0	400	1
Demand	150	120	300	130		
Penalty	1	1	1	0		

Table 3: For each row and column, the "penalty" is the difference between the smallest and second smallest cost in that row or column. Pick the row or column with the smallest penalty.

Choose arbitrarily if there is a tie.

	W1	W2	W3	W4	Supply	Penalty
F1	2	1	3	0	200	1
F2	2	2	4	0	$\mathbf{1 0 0}$	1000
F3	1	4	3	0	400	1
Demand	150	120	300	13030		
Penalty	1	1	1	0		

Table 4: Pick cell in chosen row or column which has smallest cost. Make that decision variable basic, assigning value equal to the smaller of Supply and Demand for that cell. In this case, we chose to make F2W4 basic, with value $=\min (100,130)=100$ we have used all the supply from F2 so we will ignore that row from now on.

	W1		W2		W3		W4		Supply	Penalty
F1	2	1	3	0	$\mathbf{3 0}$	200170	1			
F2	2	2	4	0	$\mathbf{1 0 0}$	1000	2			
F3	1	4	3	0	400	1				
Demand	150	120	300	130300						
Penalty	1	1	1	0						

Table 5: Smallest remaining penalty is still in W4 column. We make F1W4 basic

	W1	W2	W3	W4	Supply	Penalty
F1	2	120	3	$0 \quad 30$	170-50	1
F2	2	2	4	$0 \quad 100$	0	2
F3	1	4	3	0	400	1
Demand	150	1200	300	0		
Penalty	1	1	1	0		

Table 6: Now the W4 demand has been met so we will ignore this column. The smallest remaining penalty is 1 . We can choose any remaining row or column with penalty 1 . We chose F1W2 and made it basic. This meets W2's demand so ignore that column later.

	W1		W2		W3		W4		Supply	Penalty
F1	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1 2 0}$	3	0	$\mathbf{3 0}$	50			
F2	$\mathbf{2}$	$\mathbf{2}$	4	0	$\mathbf{1 0 0}$	0	$\mathbf{1}$			
F3	$\mathbf{1}$	$\mathbf{1 5 0}$	4	3	0	400250	$\mathbf{1}$			
Demand	1500	0	300	0						
Penalty	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$						

Table 7: Make F3W1 Basic

		W1	W2			W3		W4	Supply	Penalty
F1	2		1	120	3		0	30	50	1
F2	2		2		4		0	100	0	2
F3	1	150	4		3	250	0		2500	1
Demand		0		0		30050		0		
Penalty		1		1		1		0		

Table 8: Make F3W3 Basic

		W1	W2		W3		W4		Supply	Penalty
F1	2		1	120	3	50	0	30	500	1
F2	2		2		4		0	100	0	2
F3	1	150	4		3	250	0		0	1
Demand		0		0		500		0		
Penalty		1		1		1		0		

Table 8: Make F1W3 Basic

	W1		W2		W3		W4		Supply
F1	$\mathbf{2}$		$\mathbf{1}$	$\mathbf{1 2 0}$	$\mathbf{3}$	$\mathbf{5 0}$	$\mathbf{0}$	$\mathbf{3 0}$	200
F2	$\mathbf{2}$	$\mathbf{2}$	4		$\mathbf{0}$	$\mathbf{1 0 0}$	100		
F3	$\mathbf{1}$	$\mathbf{1 5 0}$	4	3	$\mathbf{2 5 0}$	$\mathbf{0}$		400	
Demand	150		120		300		150		

Table 9: We now have an initial basic feasible solution. We've put back the original supplies and demands for convenience. Now test for optimality.

$\mathrm{u} 1+\mathrm{v} 2=1$	$\mathrm{u} 1=0$	$\mathrm{v} 1=1$	$\mathrm{t} 11=2-0-1=1$
$\mathrm{u} 1+\mathrm{v} 3=3$	$\mathrm{u} 2=0$	$\mathrm{v} 2=1$	$\mathrm{t} 21=2-0-1=1$
$\mathrm{u} 1+\mathrm{v} 4=0$	$\mathrm{u} 3=0$	$\mathrm{v} 3=3$	$\mathrm{t} 22=2-0-1=1$
$\mathrm{u} 2+\mathrm{v}=0$		$\mathrm{v} 4=0$	$\mathrm{t} 23=4-0-3=1$
$\mathrm{u} 3+\mathrm{v}=0$			$\mathrm{t} 32=4-3-1=0$
$\mathrm{u} 3+\mathrm{v} 3=3$			$\mathrm{t} 34=0-0-0=0$

Table 10: Test for Optimality. All the tij are greater than or equal to 0 so we have an optimal solution. If a $\mathrm{t}_{\mathrm{ij}}=0$, that indicates that we have multiple optimal solutions. Here we can obtain another optimal solution by letting F3W2 or F3W4 basic.

	W1	W2	W3	W4	Supply
F1	2	1120	$3 \mathbf{5 0}^{+}$	$0 \quad 30^{-}$	200
F2	2	2	4	$0 \quad 100$	100
F3	1150	4	$3 \quad 250{ }^{-}$	$0 \mathrm{y}^{+}$	400
Demand	150	120	300	150	

Table 11: Making F3W4 basic. Least negative square is 30 so we add 30 to F3W4 and F1W3, subtract 30 from F1W4 and F3W3. Note that F1W4 will leave the basis.

	W1	W2		W3		W4	
F1	2	$\mathbf{1}$	$\mathbf{1 2 0}$	$\mathbf{3}$	$\mathbf{5 0}^{ \pm} \mathbf{8 0}$	0	Supply
F2	2		2	4	0	200	
F3	$\mathbf{1}$	$\mathbf{1 5 0}$	4	$3 \mathbf{1 0 0}$	100		

Table 12: Carry out the steps indicated by comments under Table 11.

	W1		W2		W3		W4	
F1	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1 2 0}$	$\mathbf{3}$	$\mathbf{8 0}$	$\mathbf{0}$	Supply	
F2	$\mathbf{2}$	$\mathbf{2}$	4		$\mathbf{0}$	$\mathbf{1 0 0}$	200	
F3	$\mathbf{1}$	$\mathbf{1 5 0}$	4	3	$\mathbf{2 2 0}$	$\mathbf{0}$	$\mathbf{3 0}$	400
Demand	150		120		300		150	

Table 13: Result of the Iteration. Now test for optimality

$u 1+v 2=1$	$u 1=0$	$v 1=1$	$t 11=2-0-1=1$
$u 1+v 3=3$	$u 2=0$	$v 2=1$	$t 14=0-0-0=0$
$u 2+v 4=0$	$u 3=0$	$v 3=3$	$t 21=2-0-1=1$
$u 3+v 1=1$		$v 4=0$	$t 22=2-0-1=1$
$u 3+v 3=3$			$t 23=4-0-3=1$
$u 3+v 4=0$			$t 32=4-0-1=3$
			OPTIMAL!

Table 14: Carry out optimality test. All the tij's are ≥ 0 so we have reached an optimal solution.

Some Important OR Topics Yet To Be Explored:

Integer Programming
Quadratic and Other Nonlinear Programming
Combinatorial Programming
Assignment Problems
Inventory Theory
Queues
Decision Theory
Markov Decision Processes
Simulation
Supply Chain Management

