

The Transportation Problem

Class 32 May 5, 2023

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Handouts: Notes on Assignment 11 Assignment 12

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Announcements

- Final Exam Thursday, May 18
 9 AM - 12 Noon
- Senior Mathematics Seminar Presentations Next Week Watch For Announcements

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Finding Your Optimal Strategy in Zero-Sum Game

 Eliminate All Dominated Strategies
 Determine "Best of the Worst"

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

		T_1	T_2	T_3	T_4	MIN		
	S_1	5	6	20	3	3		
	S_2	12	10	17	25	10	\Leftarrow	
	S_3	16	8	9	8	8		
	S_4	13	9	6	5	5		
	MAX	16	10	20	25			
			↑					
maximin $= \underline{v} = $ lower value								
minimax $= ar{m{ u}} = { m upper}$ value								
If maximin $=$ minimax, then we have a								
Saddle Point.								

If there is a Saddle Point, then it is stable. If both players know what the other will do, neither will change their strategy. NOT EVERY GAME HAS A SADDLE POINT

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Simple Example

	T_1	T_2	Worst
S_1	8	-3	-3
S_2	-5	4	-5
Worst	8	4	

Here $\underline{v} = -3$ and $\overline{v} = 4$. **Rose** can guarantee herself -3 by playing S_1 . **Colin** can limit her winnings to 4. **Rose** tentatively selects S_1 and **Colin** selects T_2 . But if **Rose** knows **Colin** will play T_2 , she should switch to S_2 . Knowing this, **Colin** switches to T_1 but.. Then **Rose** switches to S_1 causing **Colin** to... How Should Each Play The Game? Choose a Strategy At Random! But With What Probability?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mixed Strategies
Let
$$p$$
 be the probability Rose plays S_1 .
The $1 - p$ is the probability she plays S_2 .
Similarly, q and $1 - q$ would represent the probabilities that Colin
selects T_1 and T_2 , respectively.
Then the probabilities of the various outcomes are given by

$$\frac{q}{p} \frac{1-q}{p} \frac{p(1-q)}{(1-p)(1-q)}$$
with payoffs

$$\frac{q}{1-p} \frac{1-q}{p} \frac{1-q}{8}$$

$$\frac{q}{1-p} \frac{1-q}{-5} \frac{1-q}{4}$$

Expected Value for Rose =

 $\mathbf{EV} = 8pq - 3p(1-q) + (-5)(1-p)q + 4(1-p)(1-q)$

Expected Value for Rose =EV = 8pq - 3p(1-q) + (-5)(1-p)q + 4(1-p)(1-q)= 20pq - 7p - 9q + 4 $=(4p-\frac{9}{5})(5q-\frac{7}{7})-\frac{63}{7}+4$ $=(4p-\frac{9}{5})(5q-\frac{7}{4})+\frac{17}{20}$ **Rose:** $4p = \frac{9}{5} \Rightarrow p = \frac{9}{20}$ **Colin:** $5q - \frac{7}{4} \Rightarrow q = \frac{7}{20}$

	T_1	T_2	Worst
S_1	8	-3	-3
S_2	-5	4	-5
Worst	8	4	

Here $\underline{v} = -3$ and $\overline{v} = 4$.

$$EV = (4p - \frac{9}{5})(5q - \frac{7}{4}) + \frac{17}{20}$$

With $p = \frac{9}{20}$ and $q = \frac{7}{20}$,
the Expected Value of the Game is $\frac{17}{20}$

 $EV_{Rose} = 20pq - 7p - 9q + 4$ = (20q - 7)p - 9q + 4So **Colin** should choose $q = \frac{7}{20}$ $EV_{Colin} = -(20pq - 7p - 9q + 4)$ = -20pq + 7p + 9q - 4 =(9-20p)q+7p-4So **Rose** should choose $p = \frac{9}{20}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Another Way To Determine Equilibrium Strategies

Rose's View: Mixed Strategy vs $T_1: 8p + (1-p)(-5) = 13p - 5$ Mixed Strategy vs $T_2: -3p + 4(1-p) = 4 - 7p$

These payoffs are equal when

$$13p - 5 = 4 - 7p$$
$$20p = 9$$
$$p = \frac{9}{20}$$

Colin's Perspective: Mixed Strategy vs $S_1 : 8q + (1 - q)(-3) = 11q - 3$ Mixed Strategy vs $S_2 : -5q + 4(1 - q) = 4 - 9q$ These payoffs are equal when

$$11q - 3 = 4 - 9q \Rightarrow 20q = 7 \Rightarrow q = \frac{7}{20}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Another Example

	T_1	T_2	T_3	T_4	
S_1	1	0	3	- 3	
S_2	-1	4	-2	6	

	T_1	T_2	T_3	T_4	Row Minima
S_1	1	0	3	- 3	-3
S_2	-1	4	-2	6	-2
Column Maxima	1	4	3	6	

	T_1	T_2	T_3	T_4	Row Minima
S_1	1	0	3	- 3	-3
S_2	-1	4	-2	6	−2 ⇐ <u>v</u>
Column	1	4	3	6	
Maxima	↑				
	$\bar{v} = 1$				

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

	T_1	T_2	T_3	T_4	Row Minima
<i>S</i> ₁	1	0	3	- 3	-3
<i>S</i> ₂	-1	4	-2	6	−2 ⇐ <u>v</u>
Column	1	4	3	6	
Maxima	\uparrow				
	$\bar{v} = 1$				

Value of this game is somewhere between -2 and 4.

Consider Expected Payoff to Rose if she uses S_1 with probability p and S_2 with probability 1 - p.

vs
$$T_1: 1p + (-1)(1-p) = 2p - 1$$

vs $T_2: 0p + 4(1-p) = 4 - 4p$
vs $T_3: 3p + (-2)(1-p) = 5p - 2$
vs $T_4: -3p + 6(1-p) = 6 - 9p$

Expected Payoff to Rose with mixture (p, 1 - p):

vs
$$T_1: 2p - 1$$

vs $T_2: 4 - 4p$
vs $T_3: 5p - 2$
vs $T_4: 6 - 9p$

Is there a single *p* which guarantees same expected payoff against all 4 of Colin's strategies?

$$T_1 \text{ and } T_2: 2p - 1 = 4 - 4p \Rightarrow 6p = 5 \Rightarrow p = \frac{5}{6}$$

With $p = \frac{5}{6}$:
Expected Value against $T_1 = 2(\frac{5}{6}) - 1 = 2/3$
Expected Value against $T_2 = 4 - 4(\frac{5}{6}) = 2/3$
But
Expected Value against $T_3 = 5(\frac{5}{6}) - 2 = 13/6$
Expected Value against $T_4 = 6 - 9(\frac{5}{6}) = -3/2$

Graphical Approach

Look at bottom edge $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$ $\exists \quad \Im \land \circlearrowright$

Look at bottom edge $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$ $\exists \quad \Im \land \circlearrowright$

Rose can guarantee herself expected payoff of at least $\frac{3}{11}$ by choosing the strategy mixture $(\frac{7}{11}, \frac{4}{11})$. **Colin asks: Can I keep her winnings down to** $\frac{3}{11}$?

▶ ▲ 臣 ▶ 臣 • • • ● ●

Colin wants to play a combination of T_1 and T_4 .

	q	1-q
	T_1	T_4
S_1	1	-3
S_2	-1	6

Expected Payoffs
vs
$$S_1: 1q - 3(1 - q) = 4q - 3$$

vs $S_2: -1q + 6(1 - q) = 6 - 7q$

We can solve for q by Setting $4q - 3 = \frac{3}{11}$ or Setting $6 - 7q = \frac{3}{11}$ or Setting 4q - 3 = 6 - 7q

All these lead to $q = \frac{9}{11}$

Colin's Optimal Mixture is $\left(\frac{9}{11}, 0, 0, \frac{2}{11}\right)$

We Can Use Graphical Approach Whenever One of the Players Has Exactly 2 Strategies

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Next Time: Connecting Game Theory With Linear Programming

Connecting Game Theory With Linear Programming

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Theory of Games and Linear Programming

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Expected Payoff to Rose with mixture (p, 1 - p):

vs
$$T_1: 2p - 1$$

vs $T_2: 4 - 4p$
vs $T_3: 5p - 2$
vs $T_4: 6 - 9p$

Rose can not usually hope to find a *p* which will make all these expected values the same

Can **Rose** pick a *p* so that the expected value was $\geq \frac{1}{4}$ against **each** of T_1, T_2, T_3, T_4 ?

If so, she would have an expected payoff $\geq \frac{1}{4}$ for **all** mixtures of T_1, T_2, T_3, T_4 .

	T_1	T_2	<i>T</i> ₃	T_4
S_1	1	0	3	- 3
S_2	-1	4	-2	6

Expected Payoff to Rose with mixture (p_1, p_2) : vs $T_1: 1p_1 - 1p_2$ vs $T_2: 0p_1 + 4p_2$ vs $T_3: 3p_1 - 2p_2$ vs $T_4: -3p_1 + 6p_2$

Rose's Question: Are there p_1 and p_2 so that all these expected payoffs are at least $\frac{1}{4}$? Can she do even better than $\frac{1}{4}$? What is the largest v that can be achieved?

Rose's Problem: Maximize v such that $1p_1 - 1p_2 > v$ $0p_1 + 4p_2 > v$ $3p_1 - 2p_2 \ge v$ $-3p_1 + 6p_2 > v$ $p_1 + p_2 = 1$ $p_1, p_2 > 0$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

This is an LP Problem: Variables: p_1, p_2, v Surplus: s_1, s_2, s_3, s_4 Artificial: a_1, a_2, a_3, a_4, a_5

Rose's Problem	Colin's Problem
Maximize <i>v</i>	Minimize <i>v</i>
such that	such that
$1p_1 - 1p_2 \ge v$	
$0p_1+4p_2\geq v$	$1q_1 + 0q_2 + 3q_3 - 3q_4 \le v$
$3p_1 - 2p_2 \ge v$	$-1q_1 + 4q_2 - 2q_3 - +6q_4 \le v$
$-3p_1+6p_2 \ge v$	$q_1 + q_2 + q_3 + q_4 = 1$
$p_1+p_2=1$	
$p_1, p_2 \geq 0$	$q_1,q_2,q_3,q_4\geq 0$
Variables: p_1, p_2, v	Variables: q_1, q_2, q_3, q_4, v
Surplus: s_1, s_2, s_3, s_4	Slacks: s_1, s_2
Artificial: a_1, a_2, a_3, a_4, a_5	Artificial: a

We don't yet know whether \max/\min value of v is positive or negative so these problems are not quite in standard LP form

	T_1	T_2	<i>T</i> ₃	T_4
S_1	1	0	3	- 3
S_2	-1	4	-2	6

Largest Negative Entry is -3 So Let's Add 4 To Each Entry:

	T_1	T_2	T_3	T_4	Row Minima		
S_1	5	4	7	1	1		
<i>S</i> ₂	3	8	2	10	2 $\Leftarrow \underline{v} = 2$		
Column	5	8	7	10			
Maxima							
	$\bar{v} = 5$						
$\underline{v} = 2 \le v \le 5 = \overline{v}$							

	T_1	T_2	<i>T</i> ₃	T_4
<i>S</i> ₁	5	4	7	1
S_2	3	8	2	10

Colin's Problem: Max
$$-v(0q_1 + 0q_2 + 0q_3 + 0q_4 - 1v)$$

such that
 $5q_1 + 4q_2 + 7q_3 + 1q_4 - v \le 0$
 $3q_1 + 8q_2 + 2q_3 + 10q_4 - v \le 0$
 $1q_1 + q_2 + q_3 + 1q_4 + 0v = 1$
 $q_1, q_2, q_3, q_4, \ge 0$
 v unrestricted

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Use Benjamin's S-O-B Rule To Construct The Dual

$$\begin{array}{ll} \mathsf{Max} - v = 0q_1 + 0q_2 + 0q_3 + 0q_4 - 1v \\ & \mathsf{such that} \\ 5q_1 + 4q_2 + 7q_3 + 1q_4 - v \leq 0 & p_1 \ (\mathbf{S}) \\ 3q_1 + 8q_2 + 2q_3 + 10q_4 - v \leq 0 & p_2 \ (\mathbf{S}) \\ 1q_1 + 1q_2 + 1q_3 + 1q_4 + 0v = 1 & u \ (\mathbf{O}) \\ q_1, q_2, q_3, q_4, v \geq 0 & (\mathsf{All } \mathbf{S}) \\ v \ \mathsf{unrestricted} & (\mathbf{O}) \end{array}$$

Form Dual:

$$MIN \ 0p_1 + 0p_2 + 1u$$

such that
 $5p_1 + 3p_2 + 1u \ge 0$
 $4p_1 + 8p_2 + 1u \ge 0$
 $7p_1 + 1p_2 + 1u \ge 0$
 $1p_1 + 10p_2 + 1u \ge 0$
 $-p_1 - p_2 + 0u = -1$
 $p_1 \ge 0, p_2 \ge 0, u$ unrestricted

$$\begin{array}{c} \mathsf{MIN} \ 0p_1 + 0p_2 + 1u \\ \text{such that} \\ 5p_1 + 3p_2 + 1u \geq 0 \\ 4p_1 + 8p_2 + 1u \geq 0 \\ 7p_1 + 1p_2 + 1u \geq 0 \\ 1p_1 + 10p_2 + 1u \geq 0 \\ -p_1 - p_2 + 0u = -1 \\ p_1 \geq 0, p_2 \geq 0 \ \text{and} \ u \ \text{unrestricted} \end{array}$$

$$\begin{array}{c} \text{MAX } v \\ \text{such that} \\ 5p_1 + 3p_2 - v \ge 0 \\ 4p_1 + 8p_2 - v \ge 0 \\ 7p_1 + 1p_2 - v \ge 0 \\ 1p_1 + 10p_2 - v \ge 0 \\ -p_1 - p_2 = 1 \\ p_1 \ge 0, p_2 \ge 0, v = -u \end{array}$$

BUT THIS IS ROSE'S PROBLEM

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Consider General 2 x 4 Zero-Sum Game

	T_1	T_2	T_3	T_4
S_1	a ₁₁	a ₁₂	a ₁₃	a ₁₄
S_2	a ₂₁	a ₂₂	a ₂₃	a ₂₄

Colin's Problem: Maximize $-x_5$ such that $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 - x_5 \le 0$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 - x_5 \le 0$ $x_1 + x_2 + x_3 + x_4 = 1$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Colin's Problem: Maximize $-x_5$ such that $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 - x_5 \le 0$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 - x_5 \le 0$ $x_1 + x_2 + x_3 + x_4 = 1$ $x_1, x_2, x_3, x_4x_5 \ge 0$

Set Up Tableau									
	<i>x</i> ₁	<i>x</i> ₂	X3	<i>X</i> 4	<i>X</i> 5	s_1	<i>s</i> ₂	а	
Ζ	0	0	0	0	1	0	0	Μ	0
s_1	a ₁₁	a ₁₂	a ₁₃	a ₁₄	-1	1	0	0	0
<i>s</i> ₂	a ₂₁	a ₂₂	a ₂₃	a ₂₄	-1	0	1	0	0
а	1	1	1	1	0	0	0	1	1

Colin's Problem as LP Tableau

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	X_5	s_1	<i>s</i> ₂	а	
Ζ	0	0	0	0	1	0	0	Μ	0
<i>s</i> ₁	a ₁₁	a ₁₂	a ₁₃	a ₁₄	-1	1	0	0	0
<i>s</i> ₂	a ₂₁	a ₂₂	a ₂₃	<i>a</i> ₂₄	-1	0	1	0	0
а	1	1	1	1	0	0	0	1	1
	Make <i>a</i> basic.								
Subtract <i>M</i> times <i>a</i> row from <i>Z</i> row:									
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	X_5	s_1	<i>s</i> ₂	a	
Ζ	-M	-M	-M	-M	1	0	0	0	-M
<i>s</i> ₁	a ₁₁	a ₁₂	a ₁₃	a ₁₄	-1	1	0	0	0
<i>s</i> ₂	a ₂₁	a ₂₂	a ₂₃	a ₂₄	-1	0	1	0	0
а	1	1	1	1	0	0	0	1	1

Simplex Algorithm: x_1 will enter the basis, driving out one of the slack variables

Observe

Colin will have 3 basic variables One of them must be x_5 , the value of the game, which must be positive.

 \Rightarrow There are at most 2 of the original variables that will be positive.

 \Rightarrow At least two of x_1, x_2, x_3, x_4 will be 0.

THE OPTIMAL STRATEGY MIXTURES IN AN m x n ZERO-SUM GAME **HAVE AT MOST** min(m, n) POSITIVE **PROBABILITIES.**

A General 3 x 4 Game

	T_1	T_2	<i>T</i> ₃	T_4
S_1	a ₁₁	a ₁₂	a ₁₃	a_{14}
S_2	a ₂₁	a ₂₂	a ₂₃	<i>a</i> ₂₄
S_3	a ₃₁	a 32	a 33	<i>a</i> ₂₄

Rose's Problem: Maximize $0x_1 + 0x_2 + 0x_3 + 1v$ subject to $a_{11}x_1 + a_{21}x_2 + a_{31}x_3 - v \ge 0$ $a_{12}x_1 + a_{22}x_2 + a_{32}x_3 - v \ge 0$ $a_{13}x_1 + a_{23}x_2 + a_{33}x_3 - v \ge 0$ $a_{14}x_1 + a_{24}x_2 + a_{34}x_3 - v \ge 0$ $1x_1 + 1x_2 + 1x_3 + 0v = 1$ $x_1, x_2, x_3, v \ge 0$

Rose's Problem: Maximize $0x_1 + 0x_2 + 0x_3 + 1v$ subject to $a_{11}x_1 + a_{21}x_2 + a_{31}x_3 - v > 0$ $a_{12}x_1 + a_{22}x_2 + a_{32}x_3 - v > 0$ $a_{13}x_1 + a_{23}x_2 + a_{33}x_3 - v > 0$ $a_{14}x_1 + a_{24}x_2 + a_{34}x_3 - v > 0$ $1x_1 + 1x_2 + 1x_3 + 0v = 1$ $x_1, x_2, x_3, v \ge 0$ **Colin**'s Problem: Minimize $0y_1 + 0y_2 + 0y_3 + 0y_4 + 1u$ subject to $a_{11}y_1 + a_{12}y_2 + a_{13}y_3 + a_{14}y_4 - u \le 0$ $a_{21}y_1 + a_{22}y_2 + a_{23}y_3 + a_{24}y_4 - u < 0$ $a_{31}y_1 + a_{32}y_2 + a_{33}y_3 + a_{34}y_4 - u < 0$ $1v_1 + 1v_2 + 1v_3 + 1v_4 + 0u = 1$ $y_1, y_2, y_3, y_4, u > 0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のくで

Rose's Problem: Minimize $0x_1 + 0x_2 + 0x_3 + 1u$ subject to $a_{11}x_1 + a_{21}x_2 + a_{31}x_3 + u \ge 0$ **S** $a_{12}x_1 + a_{22}x_2 + a_{32}x_3 + u \ge 0$ **S** $a_{13}x_1 + a_{23}x_2 + a_{33}x_3 + u \ge 0$ **S** $a_{14}x_1 + a_{24}x_2 + a_{34}x_3 + u \ge 0$ **S** $1x_1 + 1x_2 + 1x_3 + 0u = 1$ **O** $x_1, x_2, x_3 \ge 0$

Colin's Objective Function: Minimize $0y_1 + 0y_2 + 0y_3 + 0y_4 + 1u$ Rewrite as Maximize $0y_1 + 0y_2 + 0y_3 + 0y_4$ - 1u Then let v = -u

Maximize $0y_1 + 0y_2 + 0y_3 + 0y_4 + 1v$ $a_{11}y_1 + a_{12}y_2 + a_{13}y_3 + a_{14}y_4 + v \le 0$ $a_{21}y_1 + a_{22}y_2 + a_{23}y_3 + a_{24}y_4 - + v \le 0$ $a_{31}y_1 + a_{32}y_2 + a_{33}y_3 + a_{34}y_4 - + v \le 0$ $1y_1 + 1y_2 + 1y_3 + 1y_4 + 0u = 1$ $y_1, y_2, y_3, y_4 \ge 0$, No restriction on v

Colin's Problem : Maximize $0y_1 + 0y_2 + 0y_3 + 0y_4 + 1v$ $a_{11}y_1 + a_{12}y_2 + a_{13}y_3 + a_{14}y_4 + v \le 0$ S $a_{21}y_1 + a_{22}y_2 + a_{23}y_3 + a_{24}y_4 - +v \le 0$ S $a_{31}y_1 + a_{32}y_2 + a_{33}y_3 + a_{34}y_4 - +v \le 0$ S $1y_1 + 1y_2 + 1y_3 + 1y_4 + 0u = 1$ O $y_1, y_2, y_3, y_4 \ge 0$, No restriction on v S. S. S. S. O

Use S-O-B Rule to Form Dual Rose's Problem: Minimize $0x_1 + 0x_2 + 0x_3 + 1u$ subject to $a_{11}x_1 + a_{21}x_2 + a_{31}x_3 + u \ge 0$ S $a_{12}x_1 + a_{22}x_2 + a_{32}x_3 + u \ge 0$ S $a_{13}x_1 + a_{23}x_2 + a_{33}x_3 + u \ge 0$ S $a_{14}x_1 + a_{24}x_2 + a_{34}x_3 + u \ge 0$ S $1x_1 + 1x_2 + 1x_3 + 0u = 1$ O $x_1, x_2, x_3 \ge 0$

f You can solve m x n zero-sum games with the simplex algorithm!

When both *m* and *n* are larger than 2, you may wish to use IOR Tutorial.

Think carefully about whether you want to solve Rose's problem or Colin's problem.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Game 1

	T_1	<i>T</i> ₂
S_1	9	-3
<i>S</i> ₂	-5	4

Game 2

	T_1	T_2	<i>T</i> ₃	T_4
S_1	1	0	3	- 3
S_2	-1	4	-2	6