Introduction to Game Theory III

Class 31

May 3, 2023

Finding Your Optimal Strategy in Zero-Sum Game

- Eliminate All Dominated Strategies Determine "Best of the Worst"

	T_{1}	T_{2}	T_{3}	T_{4}	MIN	
S_{1}	5	6	20	3	$\mathbf{3}$	
S_{2}	12	10	17	25	$\mathbf{1 0}$	\Leftarrow
S_{3}	16	8	9	8	$\mathbf{8}$	
S_{4}	13	9	6	5	$\mathbf{5}$	
MAX	$\mathbf{1 6}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{2 5}$		
		\Uparrow				

maximin $=\underline{v}=$ lower value $\operatorname{minimax}=\bar{v}=$ upper value
If maximin $=$ minimax, then we have a Saddle Point.
If there is a Saddle Point, then it is stable. If both players know what the other will do, neither will change their strategy.

NOT
 EVERY GAME HAS A SADDLE POINT

	T_{1}	T_{2}	T_{3}	T_{4}	MIN	
S_{1}	5	6	20	3	$\mathbf{3}$	
S_{2}	12	10	17	25	$\mathbf{1 0}$	\Leftarrow
S_{3}	16	8	9	8	$\mathbf{8}$	
S_{4}	13	18	6	5	$\mathbf{5}$	
MAX	$\mathbf{1 6}$	$\mathbf{1 8}$	$\mathbf{2 0}$	$\mathbf{2 5}$		

A Simpler Example

	T_{1}	T_{2}	Worst
S_{1}	8	-3	-3
S_{2}	-5	4	-5
Worst	8	4	

Here $\underline{v}=-3$ and $\bar{v}=4$.
Rose can guarantee herself -3 by playing S_{1}.
Colin can limit her winnings to 4 .
Rose tentatively selects S_{1} and Colin selects T_{2}.
But if Rose knows Colin will play T_{2}, she should switch to S_{2}.
Knowing this, Colin switches to T_{1} but.. Then Rose switches to S_{1} causing Colin to...

An Historical Example

World War II

Click for More Information:
Operation Lüttich and Operation Tractable, August 1944

Omar Bradley

Günther Von Kluge
October 30, 1882 - August 19, 1944
More Abut Kluge

Example: In August 1944 after the invasion of Normandy, the Allies broke out of their beachhead at Avranches, France and headed into the main part of the country. The German General von Kluge, commander of the ninth army, faced two options:

- T_{1} : Stay and attack the advancing Allied armies.
- T_{2} : Withdraw into the mainland and regroup.

Simultaneously, General Bradley, commander of the Allied ground forces faced a similar set of options regarding the German ninth army:

- S_{1} Reinforce the gap created by troop movements at Avranches
- S_{2} Send his forces east to cut-off a German retreat
- S_{3} Do nothing and wait a day to see what the adversary did.

In real life, there were no pay-off values, however General Bradley's diary indicates the scenarios he preferred in order. There are six possible scenarios. Bradley ordered them from most to least preferable and using this ranking, we can construct the game matrix.

	Von Kluge's	Strategies	Row Min	
Bradley's Strategies	Attack	Retreat		
Reinforce Gap	2	3	2	
Move East	1	5	1	
Wait	6	4	4	$\Leftarrow \underline{v}$
Column Max	6	5		

Notice that the maximin value of the rows is not equal to the minimax value of the columns. This is indicative of the fact that there is not a pair of strategies that form an equilibrium for this game.

	Von Kluge's	Strategies	Row Min	
Bradley's Strategies	Attack	Retreat		
Reinforce Gap	2	3	2	
Move East	1	5	1	
Wait	6	4	4	$\Leftarrow \underline{v}$
Column Max	6	5		

Suppose that von Kluge plays his minimax strategy to retreat then Bradley would do better not to play his maximin strategy (wait) and instead move east, cutting of von Kluge's retreat, thus obtaining a payoff of $(5,-5)$. But von Kluge would realize this and deduce that he should attack, which would yield a payoff of (1, $-1)$. However, Bradley could deduce this as well and would know to play his maximin strategy (wait), which yields payoff $(6,-6)$. However, von Kluge would realize that this would occur in which case he would decide to retreat yielding a payoff of $(4,-4)$. The cycle then repeats.

How Should Each Play The Game?

Choose a Strategy At Random! But With What Probability?

Mixed Strategies

Let p be the probability Rose plays S_{1}.
The $1-p$ is the probability she plays S_{2}.
Similarly, q and $1-q$ would represent the probabilities that Colin selects T_{1} and T_{2}, respectively.
Then the probabilities of the various outcomes are given by

	q	$1-q$
p	$p q$	$p(1-q)$
$1-p$	$(1-p) q$	$(1-p)(1-q)$

with payoffs

	q	$1-q$
p	8	-3
$1-p$	-5	4

Expected Value for Rose $=$
$\mathbf{E V}=8 p q-3 p(1-q)+(-5)(1-p) q+4(1-p)(1-q)$

Expected Value for Rose =

$\mathbf{E V}=8 p q-3 p(1-q)+(-5)(1-p) q+4(1-p)(1-q)$

$$
\begin{gathered}
=20 p q-7 p-9 q+4 \\
=\left(4 p-\frac{9}{5}\right)\left(5 q-\frac{7}{4}\right)-\frac{63}{4}+4 \\
=\left(4 p-\frac{9}{5}\right)\left(5 q-\frac{7}{4}\right)+\frac{17}{20}
\end{gathered}
$$

$$
\text { Rose: } 4 p=\frac{9}{5} \Rightarrow p=\frac{9}{20}
$$

$$
\text { Colin: } 5 q-\frac{7}{4} \Rightarrow q=\frac{7}{20}
$$

	T_{1}	T_{2}	Worst
S_{1}	8	-3	-3
S_{2}	-5	4	-5
Worst	8	4	

Here $\underline{v}=-3$ and $\bar{v}=4$.

$$
E V=\left(4 p-\frac{9}{5}\right)\left(5 q-\frac{7}{4}\right)+\frac{17}{20}
$$

With $p=\frac{9}{20}$ and $q=\frac{7}{20}$, the Expected Value of the Game is $\frac{17}{20}$

$\mathbf{E V}_{\text {Rose }}=20 p q-7 p-9 q+4$

$$
=(20 q-7) p-9 q+4
$$

So Colin should choose $q=\frac{7}{20}$
$\mathbf{E V}_{\text {Colin }}=-(20 p q-7 p-9 q+4)$

$$
\begin{gathered}
=-20 p q+7 p+9 q-4= \\
(9-20 p) q+7 p-4
\end{gathered}
$$

So Rose should choose $p=\frac{9}{20}$

Another Way To Determine Equilibrium Strategies

Rose's View:
Mixed Strategy vs $T_{1}: 8 p+(1-p)(-5)=13 p-5$
Mixed Strategy vs $T_{2}:-3 p+4(1-p)=4-7 p$
These payoffs are equal when

$$
\begin{gathered}
13 p-5=4-7 p \\
20 p=9 \\
p=\frac{9}{20}
\end{gathered}
$$

Colin's Perspective:
Mixed Strategy vs $S_{1}: 8 q+(1-q)(-3)=11 q-3$
Mixed Strategy vs $S_{2}:-5 q+4(1-q)=4-9 q$
These payoffs are equal when

$$
11 q-3=4-9 q \Rightarrow 20 q=7 \Rightarrow q=\frac{7}{20}
$$

$$
\begin{aligned}
& \text { A Graphical Approach } \\
& \text { Look at Rose's Expected Payoffs: } \\
& \text { vs } T_{1}: 13 p-5 \\
& \text { vs } T_{2}: 4-7 p
\end{aligned}
$$

Graph these on $0 \leq p \leq 1$.

A plot of $13 p-5$ in red and $4-7 p$ in blue

Plot $\min (13 p-5,4-7 p)$ for $0 \leq p \leq 1$ -

Another Example

	T_{1}	T_{2}	T_{3}	T_{4}
S_{1}	1	0	3	-3
S_{2}	-1	4	-2	6

	T_{1}	T_{2}	T_{3}	T_{4}	Row Minima
S_{1}	1	0	3	-3	$\mathbf{- 3}$
S_{2}	-1	4	-2	6	$\mathbf{- 2}$
Column	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{6}$	
Maxima					

	T_{1}	T_{2}	T_{3}	T_{4}	Row Minima
S_{1}	1	0	3	-3	$-\mathbf{3}$
S_{2}	-1	4	-2	6	$-\mathbf{- 2} \Leftarrow \underline{v}$
Column	$\mathbf{1}$	4	3	6	
Maxima	\Uparrow				

	T_{1}	T_{2}	T_{3}	T_{4}	Row Minima
S_{1}	1	0	3	-3	$\mathbf{- 3}$
S_{2}	-1	4	-2	6	$\mathbf{- 2} \Leftarrow \underline{v}$
Column	$\mathbf{1}$	4	3	6	
Maxima	\Uparrow				
	$\bar{v}=1$				

Value of this game is somewhere between -2 and 4.
Consider Expected Payoff to Rose if she uses S_{1} with probability p and S_{2} with probability $1-p$.

$$
\begin{aligned}
& \text { vs } T_{1}: 1 p+(-1)(1-p)=2 p-1 \\
& \text { vs } T_{2}: 0 p+4(1-p)=4-4 p \\
& \text { vs } T_{3}: 3 p+(-2)(1-p)=5 p-2 \\
& \text { vs } T_{4}:-3 p+6(1-p)=6-9 p
\end{aligned}
$$

Expected Payoff to Rose with mixture $(p, 1-p)$:

$$
\begin{aligned}
& \text { vs } T_{1}: 2 p-1 \\
& \text { vs } T_{2}: 4-4 p \\
& \text { vs } T_{3}: 5 p-2 \\
& \text { vs } T_{4}: 6-9 p
\end{aligned}
$$

Is there a single p which guarantees same expected payoff against all 4 of Colin's strategies?
T_{1} and $T_{2}: 2 p-1=4-4 p \Rightarrow 6 p=5 \Rightarrow p=\frac{5}{6}$
With $p=\frac{5}{6}$:
Expected Value against $T_{1}=2\left(\frac{5}{6}\right)-1=2 / 3$
Expected Value against $T_{2}=4-4\left(\frac{5}{6}\right)=2 / 3$
But
Expected Value against $T_{3}=5\left(\frac{5}{6}\right)-2=13 / 6$
Expected Value against $T_{4}=6-9\left(\frac{5}{6}\right)=-3 / 2$

Graphical Approach

Look at bottom edge

Look at bottom edge

Plot $\min (2 p-1,4-4 p, 5 p-2,6-9 p)$ for $0 \leq p \leq 1$

Rose can guarantee herself expected payoff of at least $\frac{3}{11}$ by choosing the strategy mixture $\left(\frac{7}{11}, \frac{4}{11}\right)$.
Colin asks: Can I keep her winnings down to $\frac{3}{11}$?

Colin wants to play a combination of T_{1} and $T 4$.

	q	$1-q$
	T_{1}	T_{4}
S_{1}	1	-3
S_{2}	-1	6

Expected Payoffs

$$
\begin{aligned}
& \text { vs } S_{1}: 1 q-3(1-q)=4 q-3 \\
& \text { vs } S_{2}:-1 q+6(1-q)=6-7 q
\end{aligned}
$$

We can solve for q by
Setting $4 q-3=\frac{3}{11}$ or
Setting $6-7 q=\frac{3}{11}$ or
Setting $4 q-3=6-7 q$
All these lead to $q=\frac{9}{11}$
Colin's Optimal Mixture is $\left(\frac{9}{11}, 0,0, \frac{2}{11}\right)$

We Can Use Graphical Approach Whenever One of the Players Has Exactly 2 Strategies

Next Time: Connecting Game Theory With Linear Programming

