

Class 30

May 1, 2023

Handouts

Advice on Team Project 2

Some Advice on Assignment 11

On Problem 10.4-1:

- No Expected Values Here
- Want Probability he ends up with exactly 100 dollars
- Decision variable $x_{n}=$ amount to bet on nth match
- States to consider: $s_{n}=$ current fortune of the player before betting on the nth match.
- Interesting values of s to consider (perhaps): $0 \leq s<25,25$, $25<s<50,50,50<s<75,75,75<s<100,100$, $s>100$
- The only probabilities you should see are $0,1 / 4,1 / 2,3 / 4$ and 1.
- Worth looking carefully at solution to 10.4-2.
- It may be useful to look at a recursive relation of the form $f_{n}\left(s_{n}, x_{n}\right)=\frac{1}{2} f_{n+1}^{*}\left(s_{n}-x_{n}\right)+\frac{1}{2} f_{n+1}^{*}\left(s_{n}+x_{n}\right)$

Introduction To The Theory of Games

Theory of Games and Economics Behavior

THEORY OF GAMES AND ECONOMIC BEHAVIOR
JOHN VON NEUMANN AND OSKAR MORGENSTER

4ロ〉4句 1 引 三

The Elephant in the Book

The Basic Ingredients of a Game

Players
Rules
Strategies Outcomes

Strategies

Infinite Number for Each Player

Finite Number for Each

 Player
Focus on Strategy

strat•e•gy

(străt' ə-jē) n. 1. Plan of action designed to achieve a particular goal.

Two-Person Game

With Finite Number of Strategies $m \times n$ Game

- Outcome Matrix

Payoff Matrix

Two-Person Game With Finite Number of Strategies $m \times n$ Game

Outcome Matrix Payoff Matrix

Example: 2×3 Games Between

 Rose and ColinRose has 2 strategies $\left(S_{1}, S_{2}\right)$
Colin has 3 strategies (T_{1}, T_{2}, T_{3})
Outcome Matrix

		Colin		
		T_{1}	T_{2}	T_{3}
Rose	S_{1}	O_{11}	O_{12}	O_{13}
	S_{2}	O_{21}	O_{22}	O_{23}

Outcome Matrix

		Colin		
		T_{1}	T_{2}	T_{3}
Rose	S_{1}	$\left(a_{1}, b_{1}\right)$	$\left(a_{2}, b_{2}\right)$	$\left(a_{3}, b_{3}\right)$
	S_{2}	$\left(a_{4}, b_{4}\right)$	$\left(a_{5}, b_{5}\right)$	$\left(a_{6}, b_{6}\right)$

Zero-Sum Game

$$
b_{i}=-a_{i} \text { for all } i
$$

Display only payoff to Row Player

		Colin		
		T_{1}	T_{2}	T_{3}
Rose	S_{1}	1	2	0
	S_{2}	2	-3	-2
	S_{3}	0	3	-1

Bigger Numbers are Better For Rose Smaller Numbers are Better for Colin

Dominating Strategy

		Colin		
		T_{1}	T_{2}	T_{3}
Rose	S_{1}	1	2	0
	S_{2}	2	-3	-2
	S_{3}	0	3	-1

$T_{3}>T_{1}$: Colin will never play $T 1$
Game Becomes

		Colin	
		T_{2}	T_{3}
Rose	S_{1}	2	0
	S_{2}	-3	-2
	S_{3}	3	-1

		Colin	
		T_{2}	T_{3}
Rose	S_{1}	2	0
	S_{2}	-3	-2
	S_{3}	3	-1

But now $S_{1}>S_{2}$ so Rose will never select S_{2}

		Colin	
		T_{2}	T_{3}
Rose	S_{1}	2	0
	S_{3}	3	-1

		Colin	
		T_{2}	T_{3}
Rose	S_{1}	2	0
	S_{3}	3	-1

Now $T_{3}>T_{2}$ so eliminate T_{2}

		Colin
		T_{3}
Rose	S_{1}	0
	S_{3}	-1

Finally, $S_{1}>S_{2}$ so eliminate S_{2} :

		Colin T_{3}
Rose	S_{1}	0

Eliminate Dominated Strategies If They Exist

Finding Your Optimal Strategy in Zero-Sum Game

- Eliminate All Dominated Strategies Determine "Best of the Worst"

Here's Another Way To Analyze This Game:

Choose Best of Worst Maximin or Minimax

	T_{1}	T_{2}	T_{3}	T_{4}	MIN	
S_{1}	5	6	20	3	$\mathbf{3}$	
S_{2}	12	10	17	25	$\mathbf{1 0}$	\Leftarrow
S_{3}	16	8	9	8	$\mathbf{8}$	
S_{4}	13	9	6	5	$\mathbf{5}$	
MAX	$\mathbf{1 6}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{2 5}$		
		\Uparrow				

maximin $=\underline{v}=$ lower value $\operatorname{minimax}=\bar{v}=$ upper value
If maximin $=$ minimax, then we have a Saddle Point.
If there is a Saddle Point, then it is stable. If both players know what the other will do, neither will change their strategy.

$$
\begin{gathered}
\text { "Best of Worst" } \\
\text { Maximin }
\end{gathered}
$$

For Rose: Find Minimum in Each Row
Take Maximum of these Minima
Lower Value \underline{v} for Game

"Best of Worst" Minimax

For Colin: Find Maximum in Each Column Take Minimum of these Maxima
Upper Value \bar{v} for Game

"Best of Worst" Maximin and Minimax Strategies

 Lower Value and Upper Value Saddle PointsTwo television networks believe there are 100 million potential viewers for Thursday night, prime-time (8-9 PM).

The networks must decide which type of program to broadcast: Science Fiction (Vermont Vampires), Drama(CSI Middlebury), or Comedy (Old Chapel's Big Bang Theory).

If the two networks initially split the 100 million viewers evenly, think of the payoff matrix entries as how many excess viewers the network's strategies will yield over 50 million.

VAMPIRES OF VERMONT

Vermont Vampires

Old Chapel's Big Bang Theory

				Row's	
	SciFi	Drama	Comedy	Worst	
SciFic	-15	-35	10	$\mathbf{- 3 5}$	
Drama	-5	8	0	$\mathbf{- 5}$	\Leftarrow
Comedy	-12	-36	20	$\mathbf{- 3 6}$	
Column's					
Worst	$\mathbf{- 5}$	$\mathbf{8}$	$\mathbf{2 0}$		
	\Uparrow				

Choose Best of Worst Maximin or Minimax

NOT
 EVERY GAME SADDLE POINT

	T_{1}	T_{2}	T_{3}	T_{4}	MIN	
S_{1}	5	6	20	3	$\mathbf{3}$	
S_{2}	12	10	17	25	$\mathbf{1 0}$	\Leftarrow
S_{3}	16	8	9	8	$\mathbf{8}$	
S_{4}	13	18	6	5	$\mathbf{5}$	
MAX	$\mathbf{1 6}$	$\mathbf{1 8}$	$\mathbf{2 0}$	$\mathbf{2 5}$		

[^0]

A football play (in which the scores does not change) is an example of a zero-sum game when the payoff is measured by yards gained or lost. In a football game, there are two players: Offense and Defense.

For simplicity, suppose the Offense has two strategies: Pass or Run while the Defense has three strategies: Pass Defense, Run Defense, or Blitz.

There is No Saddle Point

An Historical Example

World War II

Click for More Information:
Operation Lüttich and Operation Tractable, August 1944

Omar Bardley

Günther Von Kluge

Example: In August 1944 after the invasion of Normandy, the Allies broke out of their beachhead at Avranches, France and headed into the main part of the country. The German General von Kluge, commander of the ninth army, faced two options:

- T_{1} : Stay and attack the advancing Allied armies.
- T_{2} : Withdraw into the mainland and regroup.

Simultaneously, General Bradley, commander of the Allied ground forces faced a similar set of options regarding the German ninth army:

- S_{1} Reinforce the gap created by troop movements at Avranches
- S_{2} Send his forces east to cut-off a German retreat
- S_{3} Do nothing and wait a day to see what the adversary did.

In real life, there were no pay-off values, however General Bradley's diary indicates the scenarios he preferred in order. There are six possible scenarios. Bradley ordered them from most to least preferable and using this ranking, we can construct the game matrix.

	Von Kluge's	Strategies	Row Min	
Bradley's Strategies	Attack	Retreat		
Reinforce Gap	2	3	2	
Move East	1	5	1	
Wait	6	4	4	$\Leftarrow \underline{v}$
Column Max	6	5		

Notice that the maximin value of the rows is not equal to the minimax value of the columns. This is indicative of the fact that there is not a pair of strategies that form an equilibrium for this game.

Omar Bardley

Günther Von Kluge

	Von Kluge's	Strategies	Row Min	
Bradley's Strategies	Attack	Retreat		
Reinforce Gap	2	3	2	
Move East	1	5	1	
Wait	6	4	4	$\Leftarrow \underline{v}$
Column Max	6	5		

Suppose that von Kluge plays his minimax strategy to retreat then Bradley would do better not to play his maximin strategy (wait) and instead move east, cutting of von Kluge's retreat, thus obtaining a payoff of $(5,-5)$. But von Kluge would realize this and deduce that he should attack, which would yield a payoff of (1, $-1)$. However, Bradley could deduce this as well and would know to play his maximin strategy (wait), which yields payoff $(6,-6)$. However, von Kluge would realize that this would occur in which case he would decide to retreat yielding a payoff of $(4,-4)$. The cycle then repeats.

A Simpler Example

	T_{1}	T_{2}	Worst
S_{1}	8	-3	-3
S_{2}	-5	4	-5
Worst	8	4	

Here $\underline{v}=-3$ and $\bar{v}=4$.
Rose can guarantee herself -3 by playing S_{1}.
Colin can limit her winnings to 4 .
Rose tentatively selects S_{1} and Colin selects T_{2}.
But if Rose knows Colin will play T_{2}, she should switch to S_{2}.
Knowing this, Colin switches to T_{1} but.. Then Rose switches to S_{1} causing Colin to...

How Should Each Play The Game?

Choose a Strategy At Random! But With What Probability?

Mixed Strategies

Let p be the probability Rose plays S_{1}.
The $1-p$ is the probability she plays S_{2}.
Similarly, q and $1-q$ would represent the probabilities that Colin selects T_{1} and T_{2}, respectively.
Then the probabilities of the various outcomes are given by

	q	$1-q$
p	$p q$	$p(1-q)$
$1-p$	$(1-p) q$	$(1-p)(1-q)$

with payoffs

	q	$1-q$
p	8	-3
$1-p$	-5	4

Expected Value for Rose $=$
$\mathbf{E V}=8 p q-3 p(1-q)+(-5)(1-p) q+4(1-p)(1-q)$

Expected Value for Rose =

$\mathbf{E V}=8 p q-3 p(1-q)+(-5)(1-p) q+4(1-p)(1-q)$

$$
\begin{gathered}
=20 p q-7 p-9 q+4 \\
=\left(4 p-\frac{9}{5}\right)\left(5 q-\frac{7}{4}\right)-\frac{63}{4}+4 \\
=\left(4 p-\frac{9}{5}\right)\left(5 q-\frac{7}{4}\right)+\frac{17}{20}
\end{gathered}
$$

$$
\text { Rose: } 4 p=\frac{9}{5} \Rightarrow p=\frac{9}{20}
$$

$$
\text { Colin: } 5 q-\frac{7}{4} \Rightarrow q=\frac{7}{20}
$$

	T_{1}	T_{2}	Worst
S_{1}	8	-3	-3
S_{2}	-5	4	-5
Worst	8	4	

Here $\underline{v}=-3$ and $\bar{v}=4$.

$$
E V=\left(4 p-\frac{9}{5}\right)\left(5 q-\frac{7}{4}\right)+\frac{17}{20}
$$

With $p=\frac{9}{20}$ and $q=\frac{7}{20}$, the Expected Value of the Game is $\frac{17}{20}$

$\mathbf{E V}_{\text {Rose }}=20 p q-7 p-9 q+4$

$$
=(20 q-7) p-9 q+4
$$

So Colin should choose $q=\frac{7}{20}$
$\mathbf{E V}_{\text {Colin }}=-(20 p q-7 p-9 q+4)$

$$
\begin{gathered}
=-20 p q+7 p+9 q-4= \\
(9-20 p) q+7 p-4
\end{gathered}
$$

So Rose should choose $p=\frac{9}{20}$

[^0]: \square

