



#### Class 30

#### May 1, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Handouts

### **Advice on Team Project 2**

#### Some Advice on Assignment 11

On Problem 10.4-1:

- No Expected Values Here
- Want Probability he ends up with exactly 100 dollars
- Decision variable  $x_n$  = amount to bet on *n*th match
- States to consider: s<sub>n</sub> = current fortune of the player before betting on the *n*th match.
- Interesting values of s to consider (perhaps): 0 ≤ s < 25, 25, 25 < s < 50, 50, 50 < s < 75, 75, 75 < s < 100, 100, s > 100
- The only probabilities you should see are 0, 1/4, 1/2, 3/4 and 1.
- ▶ Worth looking carefully at solution to 10.4-2.
- ► It may be useful to look at a recursive relation of the form  $f_n(s_n, x_n) = \frac{1}{2}f_{n+1}^*(s_n x_n) + \frac{1}{2}f_{n+1}^*(s_n + x_n)$

### Introduction To The Theory of Games

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

#### Theory of Games and Economics Behavior





◆□▶ ◆舂▶ ◆恵▶ ◆恵▶ → 恵

The Elephant in the Book



・ロト・(四)・(日)・(日)・(日)・(日)

# The Basic Ingredients of a Game



Players Rules **Strategies** Outcomes

### Strategies

## Infinite Number for Each Player Finite Number for Each Player

### Focus on Strategy

# strat•e•gy

(străt' ə-jē) n. 1. Plan of action designed to achieve a particular goal.

人口 医水黄 医水黄 医水黄素 化甘油

### Two-Person Game With Finite Number of Strategies *m* x *n* Game

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outcome MatrixPayoff Matrix

Two-Person Game With Finite Number of Strategies  $m \ge n$  Game

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outcome MatrixPayoff Matrix





▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

### **Zero-Sum Game** $b_i = -a_i$ for all *i* Display only payoff to Row Player

|      |                |       | Colin |       |
|------|----------------|-------|-------|-------|
|      |                | $T_1$ | $T_2$ | $T_3$ |
|      | $S_1$          | 1     | 2     | 0     |
| Rose | $S_2$<br>$S_3$ | 2     | -3    | -2    |
|      | $S_3$          | 0     | 3     | -1    |

Bigger Numbers are Better For Rose Smaller Numbers are Better for Colin

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### **Dominating Strategy**



### $T_3 > T_1$ : **Colin** will never play $T_1$

Game Becomes

 $\begin{array}{c|c|c|c|c|c|c|} & {\sf Colin} & \\ \hline $T_2$ & $T_3$ \\ \hline $T_2$ & $T_3$ \\ \hline $S_1$ & $2$ & $0$ \\ \hline $Rose$ & $S_2$ & $-3$ & $-2$ \\ \hline $S_3$ & $3$ & $-1$ \\ \hline \end{array}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

|      |                       | Colin |                       |
|------|-----------------------|-------|-----------------------|
|      |                       | $T_2$ | <i>T</i> <sub>3</sub> |
|      | $S_1$                 | 2     | 0                     |
| Rose | $S_2$                 | -3    | -2                    |
|      | <i>S</i> <sub>3</sub> | 3     | -1                    |

But now  $S_1 > S_2$  so Rose will never select  $S_2$ Colin  $T_2 \quad T_3$ Rose  $S_1 \quad 2 \quad 0$  $S_3 \quad 3 \quad -1$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�?

Finding Your Optimal Strategy in Zero-Sum Game

 Eliminate All Dominated Strategies
 Determine "Best of the Worst"

・ロト ・西ト ・ヨト ・ヨー うへぐ

#### Here's Another Way To Analyze This Game:

|                        | $T_1$ | $T_2$ | $T_3$ | Worst for <b>Rose</b> |
|------------------------|-------|-------|-------|-----------------------|
| $S_1$                  | 1     | 2     | 0     | 0                     |
| $S_2$                  | 2     | -3    | -2    | -3                    |
| $S_3$                  | 0     | 3     | -1    | -1                    |
| Worst for <b>Colin</b> | 2     | 3     | 0     |                       |

#### Choose Best of Worst Maximin or Minimax

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

|                                          |                | $T_1$ | $T_2$ | $T_3$ | $T_4$ | MIN |              |
|------------------------------------------|----------------|-------|-------|-------|-------|-----|--------------|
|                                          | $S_1$          | 5     | 6     | 20    | 3     | 3   |              |
|                                          | S2<br>S3<br>S4 | 12    | 10    | 17    | 25    | 10  | $\Leftarrow$ |
|                                          | $S_3$          | 16    | 8     | 9     | 8     | 8   |              |
|                                          | $S_4$          | 13    | 9     | 6     | 5     | 5   |              |
|                                          | MAX            | 16    | 10    | 20    | 25    |     |              |
|                                          |                |       | ↑     |       |       |     |              |
| maximin $= \underline{v} =$ lower value  |                |       |       |       |       |     |              |
| $minimax = \bar{\pmb{v}} = upper  value$ |                |       |       |       |       |     |              |
| If maximin = minimax, then we have a     |                |       |       |       |       |     |              |
| Saddle Point.                            |                |       |       |       |       |     |              |
|                                          |                |       |       |       |       |     |              |

If there is a Saddle Point, then it is stable. If both players know what the other will do, neither will change their strategy.

"Best of Worst" Maximin For Rose: Find Minimum in **Fach Row** Take Maximum of these Minima Lower Value v for Game



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



### "Best of Worst" Minimax For Colin: Find Maximum in Fach Column Take Minimum of these Maxima Upper Value $\overline{v}$ for Game

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲目 ● ● ● ●

## the sure wheat that goes a long way

Kelloggis



High Fibre Wholegrain ORIGINAL

目 わり

"Best of Worst" Maximin and Minimax **Strategies** Lower Value and Upper Value Saddle Points

Two television networks believe there are 100 million potential viewers for Thursday night, prime-time (8 - 9 PM).

The networks must decide which type of program to broadcast: Science Fiction (*Vermont Vampires*), Drama(*CSI Middlebury*), or Comedy (*Old Chapel's Big Bang Theory*).

If the two networks initially split the 100 million viewers evenly, think of the payoff matrix entries as how many excess viewers the network's strategies will yield over 50 million.



#### **Vermont Vampires**



**CSI** Middlebury



#### **Old Chapel's Big Bang Theory**

・ロト ・ 日 ト ・ ヨ ト ・

|          | SciFi | Drama | Comedy | Row's<br>Worst |              |
|----------|-------|-------|--------|----------------|--------------|
| SciFic   | -15   | -35   | 10     | -35            |              |
| Drama    | -5    | 8     | 0      | -5             | $\Leftarrow$ |
| Comedy   | -12   | -36   | 20     | -36            |              |
| Column's |       |       |        |                |              |
| Worst    | -5    | 8     | 20     |                |              |
|          | ↑     |       |        |                |              |

#### Choose Best of Worst Maximin or Minimax

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

NOT EVERY GAME HAS A SADDLE POINT

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

|       | $T_1$ | $T_2$ | $T_3$ | $T_4$ | MIN |              |
|-------|-------|-------|-------|-------|-----|--------------|
| $S_1$ | 5     | 6     | 20    | 3     | 3   |              |
| $S_2$ | 12    | 10    | 17    | 25    | 10  | $\Leftarrow$ |
| $S_3$ | 16    | 8     | 9     | 8     | 8   |              |
| $S_4$ | 13    | 18    | 6     | 5     | 5   |              |
| MAX   | 16    | 18    | 20    | 25    |     |              |
|       | ↑     |       |       |       |     |              |

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶



メロト メロト メヨト メヨト

э



A football play (in which the scores does not change) is an example of a zero-sum game when the payoff is measured by yards gained or lost. In a football game, there are two players: Offense and Defense.

For simplicity, suppose the Offense has two strategies: Pass or Run while the Defense has three strategies: Pass Defense, Run Defense, or Blitz.

|                          | Pass    | Run     |       | Row's |              |
|--------------------------|---------|---------|-------|-------|--------------|
|                          | Defense | Defense | Blitz | Worst |              |
| Pass                     | -3      | 9       | -5    | -5    |              |
| Run                      | 4       | -3      | 6     | -3    | $\Leftarrow$ |
| Column's                 |         |         |       |       |              |
| Worst                    | 4       | 9       | 6     |       |              |
|                          | 1       |         |       |       |              |
| There is No Saddle Point |         |         |       |       |              |

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

## An Historical Example



## World War II Click for More Information: Operation Lüttich and Operation Tractable, August 1944



Omar Bardley



Günther Von Kluge

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Example: In August 1944 after the invasion of Normandy, the Allies broke out of their beachhead at Avranches, France and headed into the main part of the country. The German General von Kluge, commander of the ninth army, faced two options:

- $T_1$ : Stay and attack the advancing Allied armies.
- T<sub>2</sub>: Withdraw into the mainland and regroup.

Simultaneously, General Bradley, commander of the Allied ground forces faced a similar set of options regarding the German ninth army:

- S<sub>1</sub> Reinforce the gap created by troop movements at Avranches
- $S_2$  Send his forces east to cut-off a German retreat
- >  $S_3$  Do nothing and wait a day to see what the adversary did.

In real life, there were no pay-off values, however General Bradley's diary indicates the scenarios he preferred in order. There are six possible scenarios. Bradley ordered them from most to least preferable and using this ranking, we can construct the game matrix.

|                      | Von Kluge's | Strategies           | Row Min |                            |
|----------------------|-------------|----------------------|---------|----------------------------|
| Bradley's Strategies | Attack      | Retreat              |         |                            |
| Reinforce Gap        | 2           | 3                    | 2       |                            |
| Move East            | 1           | 5                    | 1       |                            |
| Wait                 | 6           | 4                    | 4       | $\Leftarrow \underline{v}$ |
| Column Max           | 6           | 5                    |         |                            |
|                      |             | $\uparrow ar{m{ u}}$ |         |                            |

Notice that the maximin value of the rows is not equal to the minimax value of the columns. This is indicative of the fact that there is not a pair of strategies that form an equilibrium for this game.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



Omar Bardley



Günther Von Kluge

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

|                      | Von Kluge's | Strategies | Row Min |                            |
|----------------------|-------------|------------|---------|----------------------------|
| Bradley's Strategies | Attack      | Retreat    |         |                            |
| Reinforce Gap        | 2           | 3          | 2       |                            |
| Move East            | 1           | 5          | 1       |                            |
| Wait                 | 6           | 4          | 4       | $\leftarrow \underline{v}$ |
| Column Max           | 6           | 5          |         |                            |
|                      |             | ↑ <b>⊽</b> |         | '                          |

Suppose that von Kluge plays his minimax strategy to retreat then Bradley would do better not to play his maximin strategy (wait) and instead move east, cutting of von Kluge's retreat, thus obtaining a payoff of (5, -5). But von Kluge would realize this and deduce that he should attack, which would yield a payoff of (1, -1). However, Bradley could deduce this as well and would know to play his maximin strategy (wait), which yields payoff (6, -6). However, von Kluge would realize that this would occur in which case he would decide to retreat yielding a payoff of (4, -4). The cycle then repeats.

## A Simpler Example

|       | $T_1$ | $T_2$ | Worst |
|-------|-------|-------|-------|
| $S_1$ | 8     | -3    | -3    |
| $S_2$ | -5    | 4     | -5    |
| Worst | 8     | 4     |       |

Here  $\underline{v} = -3$  and  $\overline{v} = 4$ . **Rose** can guarantee herself -3 by playing  $S_1$ . **Colin** can limit her winnings to 4. **Rose** tentatively selects  $S_1$  and **Colin** selects  $T_2$ . But if **Rose** knows **Colin** will play  $T_2$ , she should switch to  $S_2$ . Knowing this, **Colin** switches to  $T_1$  but.. Then **Rose** switches to  $S_1$  causing **Colin** to... How Should Each Play The Game? Choose a Strategy At Random! But With What Probability?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Mixed Strategies  
Let 
$$p$$
 be the probability Rose plays  $S_1$ .  
The  $1 - p$  is the probability she plays  $S_2$ .  
Similarly,  $q$  and  $1 - q$  would represent the probabilities that Colin  
selects  $T_1$  and  $T_2$ , respectively.  
Then the probabilities of the various outcomes are given by  

$$\frac{q}{p} \frac{1-q}{p} \frac{p(1-q)}{(1-p)(1-q)}$$
with payoffs  

$$\frac{q}{1-p} \frac{1-q}{p} \frac{1-q}{8}$$

$$\frac{q}{1-p} \frac{1-q}{-5} \frac{1-q}{4}$$

Expected Value for Rose =

 $\mathbf{EV} = 8pq - 3p(1-q) + (-5)(1-p)q + 4(1-p)(1-q)$ 

## Expected Value for Rose =EV = 8pq - 3p(1-q) + (-5)(1-p)q + 4(1-p)(1-q)= 20pq - 7p - 9q + 4 $=(4p-\frac{9}{5})(5q-\frac{7}{7})-\frac{63}{7}+4$ $=(4p-\frac{9}{5})(5q-\frac{7}{4})+\frac{17}{20}$ **Rose:** $4p = \frac{9}{5} \Rightarrow p = \frac{9}{20}$ **Colin:** $5q - \frac{7}{4} \Rightarrow q = \frac{7}{20}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

|       | $T_1$ | $T_2$ | Worst |
|-------|-------|-------|-------|
| $S_1$ | 8     | -3    | -3    |
| $S_2$ | -5    | 4     | -5    |
| Worst | 8     | 4     |       |

Here  $\underline{v} = -3$  and  $\overline{v} = 4$ .

$$EV = (4p - \frac{9}{5})(5q - \frac{7}{4}) + \frac{17}{20}$$
  
With  $p = \frac{9}{20}$  and  $q = \frac{7}{20}$ ,  
the Expected Value of the Game is  $\frac{17}{20}$ 

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

 $EV_{Rose} = 20pq - 7p - 9q + 4$ = (20q - 7)p - 9q + 4So **Colin** should choose  $q = \frac{7}{20}$  $EV_{Colin} = -(20pq - 7p - 9q + 4)$ = -20pq + 7p + 9q - 4 =(9-20p)q+7p-4So **Rose** should choose  $p = \frac{9}{20}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで