Duality: Round 3

Class 14

Wednesday, March 15, 2023

(ロ)、(型)、(E)、(E)、 E) の(()

Exam 1 Tonight Starting at 7 PM Here

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Comments About Assignment 5

- Weak Duality Theorem Will Be Helpful
- Problems with No ≥ 0 Constraints on Decision Variables Let x = x⁺ - x⁻.
 Suppose optimal solution has x⁺ = 4 and x⁻ = 7. Then x = ?
- What is meant by Primal-Dual Table?

	<i>x</i> ₁	<i>x</i> ₂	
<i>y</i> ₁	30	12	≤ 6000
<i>y</i> 2	10	8	≤ 2600
<i>y</i> 3	4	8	≤ 2000
	IV	IV	
	4.5	4	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction To Duality Part III

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Weak Duality Theorem

If **x** is a feasible solution to the Primal Problem and **y** is a feasible solution of the Dual Problem, then $\mathbf{cx} \leq \mathbf{yb}$.

Proof of Weak Duality Theorem

Suppose \mathbf{x} is a feasible solution to the Primal Problem and \mathbf{y} is a feasible solution of the Dual Poblem

Primal Problem	Dual Problem
Maximize $Z = c\mathbf{x}$	Minimize $W = \mathbf{y}\mathbf{b}$
subject to	subject to
$A\mathbf{x} \leq b$	y A ≥ <i>c</i>
and $\mathbf{x} \ge 0$	and $\mathbf{y} \ge 0$.

Suppose x is a feasible solution to the Primal Problem and y is a feasible solution of the Dual Poblem Begin with $\mathbf{c} \leq \mathbf{y}A$ and $A\mathbf{x} \leq \mathbf{b}$. Multiply the first inequality by x on the right. Multiply the second inequality by y on the left.

$$\begin{aligned} & \text{Then} \\ & \textbf{cx} \leq (\textbf{y} A)\textbf{x} = \textbf{y}(A\textbf{x}) \leq \textbf{y}\textbf{b}. \end{aligned}$$

A D N A 目 N A E N A E N A B N A C N

Weak Duality Theorem

If **x** is a feasible solution to the primal problem and **y** is a feasible solution of the dual problem, then $\mathbf{cx} \leq \mathbf{yb}$.

- Corollary 1: Any feasible solution of the dual gives a bound for the primal.
- Corollary 2: Any feasible solution of the primal gives a bound for the dual.
- Corollary 3: If the primal is unbounded, then the dual is infeasible.
- Corollary 4: If primal and dual both have feasible solutions, then both have optimal solutions.
- Corollary 5: Suppose x is feasible for primal and y is feasible for dual. If cx = yb, then x and y are optimal solutions.

Srong Duality Theorem

Strong Duality Property: If x* is an optimal solution for the primal problem and **y*** is an optimal solution for the dual problem, then $\mathbf{cx^*} = \mathbf{yb^*}$.

Complementary Solutions Property

At each iteration, the simplex method simultaneously identifies a CPF solution \mathbf{x} for the primal problem and a complementary solution \mathbf{y} for the dual problem (in objective function row as the coefficients of the slack variables) where $\mathbf{cx} = \mathbf{yb}$. If \mathbf{x} is not optimal for the primary problem, then **y** is not feasible for the dual problem.

Complementary Optimal Solutions Property: At the final iteration, the simplex method simultaneously identifies an optimal solution \mathbf{x}^* for the primal problem and a complementary optimal solution y^* for the dual problem where $\mathbf{c}\mathbf{x}^* = \mathbf{y}^*\mathbf{b}$. The components of \mathbf{y} are the shadow prices for the primal problem. ロ ト 4 目 ト 4 目 ト 4 目 - シック

Symmetry Property: For any primal problem and its dual problem, all relationships between them must be symmetric because the dual of this dual problem is the primal problem.

Duality Theorem

The following are the only possible relationships between the primal and dual problems:

- If one problem has feasible solutions and a bounded objective function (and therefore has an optimal solution), then so does the other problem, so both the weak and strong duality properties are applicable.
- If one problem has feasible solutions and an unbounded objective function (and hence no optimal solution), then the other problem has no feasible solutions.
- If one problem has no feasible solutions, then the other problem has no feasible solutions or an unbounded objective function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Shadow Prices

At each iteration the value of the objective function is given by

$$Z = \mathbf{cx} = \mathbf{yb} = b_1 y_1 + b_2 y_2 + .. + b_m y_m$$

We can interpret $y_i b_i$ as the current contribution to the objective function by having b_i units of resource *i* available for the primal.

Thus y_i is the contribution to objective function per unit of resource *i* when current set of basic variables is used to obtain the primal solution.

Final Tableaux

	Z	х	у	u	v	w	
Ζ	1	0	0	0	5/12	1/12	1250
x	0	1	0	0	1/6	-1/6	100
y	0	0	1	0	-1/12	5/24	200
u	0	0	0	1	-4	5/2	600

Tableau for the Optimal Basic Feasible Solution of Primal

Tableau for the Optimal Basic Feasible Solution of the Dual

	Z	Ċ	S	В	S1	S2	
Ζ	1	600	0	0	100	200	-1250
S	0	4	1	0	-1/6	1/12	5/12
В	0	-5/2	0	1	1/6	-5/24	1/12

Another Way To Look at Duality

Fromage Cheese Problem Maximize Z = 4.5x + 4ysubject to $30x + 12y \le 6000$ (Cheddar) $10x + 8y \le 2600$ (Swiss) $4x + 8y \le 2000$ (Brie) $x, y \ge 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose we want to find an upper bound for Z Multiply Cheddar constraint by $\frac{1}{6}: 5x + 2y \le 1000$ Multiply Brie constraint by $\frac{1}{4}: x + 2y \le 500$ Now Add: $6x + 4y \le 1500$ Then $Z = 4.5x + 4y \le 6x + 4y \le 1500$

Is there a **best** set of multipliers (C,S,B)?

Best Multipliers for Best Upper Bound

```
We want non-negative numbers C, S, B so that

30Cx + 12Cy \le 6000C

10Sx + 8Sy \le 2600S

4Bx + 8By \le 2000B

Add:

(30C + 10S + 4B)x + (12C + 8S + 8B)y \le 6000C + 2600S + 2000B
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

```
We need:

4.5x \le (30C + 10S + 4B)x

4y \le (12C + 8S + 8B)y

and

6000C + 2600S + 2000B as small as possible.
```