Duality and The Fundamental Insight

Class 12

March 10, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Handouts

Cycling in Simplex MethodAssignment 5

Announcements

Exam 1 Wednesday at 7 PM Warner 101

Exam 1 Details

No Time Limit Show All Work Double Check Your Answers Justify Claims Closed Book No Calculator

What Are You "Responsible" For?

All Readings:

- Chapters 1 -4 of Hillier and Lieberman
- Olinick LP Notes
- Cooper, Bhat and LeBlanc

Everything

- I've Said
- I Should Have Said But Didn't

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- I Might Have Said
- The State of the World

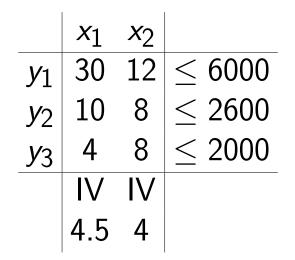
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

What Questions Remain?

Examine Final Tableaux of Fromage and Cheese Buyer Problems:

	Z	х	у	u	v	W	
Ζ	1	0	0	0	5/12	1/12	1250
x	0				1/6		
y	0	0	1	0	-1/12	5/24	200
и	0	0	0	1	-4	5/2	600

What is the meaning of the green numbers?


	Z	х	у	z	u	V	
Ζ		600					-1250
y	0	4	1	0	-1/6	1/12	5/12
z	0	-5/2	0	1	1/6	1/12 5/24	1/12

Duality And The **Fundamental** Insight

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fromage Cheese Problem	Dual Problem
Maximize $4.5x + 4y$ subject to	$\begin{array}{c} \text{Minimize } 6000C+2600S+2000B\\ \text{subject to} \end{array}$
$30x + 12y \le 6000$ (Cheddar)	$30C + 10S + 4B \ge 4.5$
$10x + 8y \le 2600$ (Swiss) $4x + 8y \le 2000$ (Brie)	$12C + 8S + 8B \ge 4$
$x, y \ge 0$	$C,S,B\geq 0$
x and y are number of	C, S, B are the price per ounce
packages of each assortment to prepare	to offer for the cheeses

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Why Bother With Duality?

- Gain more insight into information the Simplex Method provides in the final tableau
- Run time (number of iterations) of Simplex Method depends more on the number of constraints than the number of decision variables. It may be quicker to solve the dual problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: Consider an LP with 10 variables and $5 \le$ inequality constraints.

Convert to equations by introducing 5 slack variables.

We have a system of 5 equations in 10 + 5 = 15 variables. The number of potential bases is $\binom{15}{5} = 3003$.

(a) Add 5 variables: 15 variables. 5 inequalities. Number of potential bases is $\binom{20}{5} = 15,504$.

(b) Add 5 new inequalities so we have 10 variables, 10 \leq constraints.

(日)((1))

Number of potential bases is $\binom{20}{10} = 184,756.$

Final Tableaux

		Z	х	у	u	v	w	
	Ζ	1	0	0	0	5/12	1/12	1250
ĺ	Х	0	1	0	0	1/6	-1/6	100
	y	0	0	1	0	-1/12	5/24	200
	и	0	0	0	1	-4	5/2	600

Tableau for the Optimal Basic Feasible Solution of Primal

Tableau for the Optimal Basic Feasible Solution of the Dual

	Z	Ċ	S	В	S1	S2	
Ζ	1	600	0	0	100	200	-1250
S	0	4	1	0	-1/6	1/12	
В	0	-5/2	0	1	1/6	-5/24	1/12

Fundamental Insight: Green Numbers Record Row Operations

	Initial Tableau								
	Z	Х	У	u	V	W			
Ζ	1	-4.5	-4	0	0	0	0		
и	0	30		1	0	0	6000		
V	0	10	8	0	1	0	2600		
W	0	4	8	0	0	1	2000		

$$(0, \frac{5}{12}, \frac{1}{12}) \cdot (6000, 2600, 2000) = \frac{0+13000+2000}{12} = \frac{15000}{12} = 1250$$
$$\begin{pmatrix} 0 & 1/6 & -1/6 \\ 0 & -1/12 & 5/24 \\ 1 & -4 & 5/2 \end{pmatrix} \begin{pmatrix} 6000 \\ 2600 \\ 2000 \end{pmatrix} = \begin{pmatrix} 100 \\ 200 \\ 600 \end{pmatrix}$$
$$\begin{pmatrix} 0 & \frac{5}{12} & \frac{1}{12} \\ 0 & 1/6 & -1/6 \\ 0 & -1/12 & 5/24 \\ 1 & -4 & 5/2 \end{pmatrix} \begin{pmatrix} C \\ S \\ B \end{pmatrix} = \begin{pmatrix} \frac{5}{12}S + \frac{1}{12}B \\ \frac{5-B}{6} \\ \frac{1}{12}S + \frac{5}{24}B \\ C - 4S + \frac{5}{2}B \end{pmatrix}$$

シック 単 (中本) (中本) (日)

A Peek Into Sensitivity Analysis

Suppose initial amounts of cheeses are C = 6000, S = 3000, B = 2760.

Then

$$\begin{pmatrix} 0 & \frac{5}{12} & \frac{1}{12} \\ 0 & 1/6 & -1/6 \\ 0 & -1/12 & 5/24 \\ 1 & -4 & 5/2 \end{pmatrix} \begin{pmatrix} 6000 \\ 3000 \\ 2760 \end{pmatrix} = \begin{pmatrix} 1480 \\ 40 \\ 325 \\ 900 \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Optimal solution is x = 40, y = 325, u = 900, Revenue = 1480.

Shadow Prices

$(C, S, B) = (0, \frac{5}{12}, \frac{1}{12})$ are Shadow Prices

They not only give us the optimal solution to the dual problem; they also tell us how much each additional ounce of cheese would boost the objective function in the primal problem.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Primal Problem	Dual Problem
Maximize $Z = \mathbf{c}\mathbf{x}$	Minimize $W = \mathbf{y}\mathbf{b}$
subject to	subject to
$A\mathbf{x} \leq \mathbf{b}$	y A ≥ <i>c</i>
and $\mathbf{x} \geq 0$	and $\mathbf{y} \ge 0$.

Note: If you like to write decision variables (unknowns) on the right, then you can write $A^T \mathbf{y}^T \ge \mathbf{c}^T$ instead of $\mathbf{y}A \ge \mathbf{c}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Primal Problem	Dual Problem
Maximize $Z = cx$ subject to	Minimize $W = yb$ subject to
$Ax \leq b$	<i>yA</i> ≥ <i>c</i>
and $x \ge 0$.	and $y \ge 0$.
x : column vector	y : row vector

Alternative 1 for Dual	Alternative 2 for Dual
$\begin{array}{l} \text{Minimize } W = \mathbf{b}^T \mathbf{w} \\ \text{subject to} \\ A^T \mathbf{w} > \mathbf{c}^T \end{array}$	Maximize $W = -\mathbf{b}^T \mathbf{w}$ subject to $-A^T \mathbf{w} < -\mathbf{c}^T$
and $\mathbf{w} \ge 0$	and $\mathbf{w} \ge 0$.
w : column vector	w : column vector

Theorem: The dual of the dual is the primal.

Dual of the Dual is the Primal

Primal	Alternative 2 for Dual
$\begin{array}{l} \text{Maximize } Z = \mathbf{c} \mathbf{x} \\ \text{subject to} \\ A \mathbf{x} \leq \mathbf{b}^T \\ \text{and } \mathbf{x} \geq 0 \\ \mathbf{x} : \text{ column vector} \end{array}$	Maximize $W = -\mathbf{b}^T \mathbf{w}$ subject to $-A^T \mathbf{w} \le -\mathbf{c}^T$ and $\mathbf{w} \ge 0$. \mathbf{w} : column vector

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @