MATH 318: Operations Research

Spring 2023

Assignment 7

Due: Wednesday, April 17
READ: Hillier \& Lieberman: Chapter 6, Section 5 and Chapter 7, Sections 1- 2;
Hillier \& Lieberman: Chapter 10, Sections 1-2 .
PROBLEMS: Write up clear and complete solutions for the following problems from Hillier and Lieberman:

- $\quad 7.2-4$ bcdf
- $6.5-2$
- $7.2-11$

Perhaps the easiest way to do Problem 7.2-11 is to let $c_{2}=5+\Delta c_{2}$ (the problem data are on p . 236). Updating the final tableau will show that you have lost Gaussian form. The required elimination step will affect only the Z-row; the goal is that everything there stays nonnegative.

I Consider the following problem.

$$
\begin{aligned}
& \text { Maximize } \quad \begin{array}{l}
Z=3 x_{1}+x_{2}+2 x_{3} \\
\text { subject to }
\end{array}
\end{aligned}
$$

$$
x_{1}-x_{2}+2 x_{3} \leq 20
$$

$$
2 x_{1}+x_{2}-x_{3} \leq 10
$$

$$
\text { and } x_{1} \geq 0, \quad x_{2} \geq 0, \quad x_{3} \geq 0
$$

Let x_{4} and x_{5} denote the slack variables for the respective functional constraints. After we apply the simplex method, the final simplex tableau is

Coefficient of:

Basic Variable	Z		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
Z	1	8	0	0	3	4	Right
Side							
x_{3}	0	3	0	1	1	1	30
x_{2}	0	5	1	0	1	2	40

(a) Perform sensitivity analysis to determine which of the 11 parameters of the model are sensitive parameters in the sense that any change in just that parameter's value will change the optimal solution.
(b) Use algebraic analysis to find the allowable range to stay optimal for each c_{j}.
(c) Use algebraic analysis to find the allowable range to stay feasible for each b_{i}.

