MATH 318: Operations Research Spring 2023

Assignment 7 Due: Wednesday, April 17

READ: Hillier & Lieberman: Chapter 6, Section 5 and Chapter 7, Sections 1-2; Hillier & Lieberman: Chapter 10, Sections 1 –2.

PROBLEMS: Write up clear and complete solutions for the following problems from Hillier and Lieberman:

- 7.2 4 bcdf
- 6.5 2
- 7.2 11

Perhaps the easiest way to do Problem 7.2-11 is to let $c_2 = 5 + \Delta c_2$ (the problem data are on p. 236). Updating the final tableau will show that you have lost Gaussian form. The required elimination step will affect only the Z-row; the goal is that everything there stays nonnegative.

I Consider the following problem.

Maximize $Z = 3 x_1 + x_2 + 2 x_3$ subject to $x_1 - x_2 + 2 x_3 \le 20$ $2 x_1 + x_2 - x_3 \le 10$

and $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$.

Let *x*⁴ and *x*⁵ denote the slack variables for the respective functional constraints. After we apply the simplex method, the final simplex tableau is

Coefficient of:							
Basic							Right
Variable	Ζ	x_1	x_2	<i>X3</i>	<i>X</i> 4	<i>X</i> 5	Side
Ζ	1	8	0	0	3	4	100
<i>X3</i>	0	3	0	1	1	1	30
<i>X</i> 2	0	5	1	0	1	2	40

(a) Perform sensitivity analysis to determine which of the 11 parameters of the model are sensitive parameters in the sense that *any* change in just that parameter's value will change the optimal solution.

(b) Use algebraic analysis to find the allowable range to stay optimal for each c_j .

(c) Use algebraic analysis to find the allowable range to stay feasible for each b_i .